[1]
A. N. Stranges, The conversion of coal to petroleum: its german roots. Fuel Process. Technol. 16 (1987) 205-225.
DOI: 10.1016/0378-3820(87)90021-x
Google Scholar
[2]
M. B. Abdel-Baset, R. F. Yarzab and P. H. Given, Dependence of coal liquefaction behaviour on coal characteristics. 3. Statistical correlations of conversion in coal-tetralin interactions. Fuel. 57 (1978) 89-94.
DOI: 10.1016/0016-2361(78)90104-7
Google Scholar
[3]
M. Kouzu, H. Saegusa, T. Hayashi, T. Nishibayashi, M. Kobayashi, H. Itoh and H. Hattori, Effect of solvent hydrotreatment on product yield in the coal liquefaction process. Fuel Process. Technol. 68 (2000) 237-254.
DOI: 10.1016/s0378-3820(00)00124-7
Google Scholar
[4]
R. F. Yarzab, P. H. Given, W. Spackman and A. Davis, Dependence of coal liquefaction behaviour on coal characteristics. 4. Cluster analyses for characteristics of 104 coals. Fuel. 59 (1980) 81-92.
DOI: 10.1016/0016-2361(80)90046-0
Google Scholar
[5]
Vernon, L. W, Free radical chemistry of coal liquefaction: role of molecular hydrogen. Fuel. 59 (1980) 102-106.
DOI: 10.1016/0016-2361(80)90049-6
Google Scholar
[6]
R. E. Lumpkin, Recent progress in the direct liquefaction of coal. Science. 239 (1988) 873-877.
DOI: 10.1126/science.239.4842.873
Google Scholar
[7]
R. A. Keogh, D. N. Taulbee, J. C. Hower, B. Chawla, and B. H. Davis, Liquefaction characteristics of the three major maceral groups separated from a single coal. Energy & Fuels. 6 (1992) 614-618.
DOI: 10.1021/ef00035a012
Google Scholar
[8]
Y. F. Patrakov, V. F. Kamyanov and O. N. Fedyaeva, A structural model of the organic matter of Barzas liptobiolith coal. Fuel. 84 (2005) 189-199.
DOI: 10.1016/j.fuel.2004.08.021
Google Scholar
[9]
M. Cloke, Liquefaction behavior of the maceral groups in point of ayr coal using hydrogenated anthracene oil in a tubing bomb at varying temperature. Energy & Fuels. 9 (1995) 560-565.
DOI: 10.1021/ef00051a022
Google Scholar
[10]
M. Shibaoka and S. Ueda, Formation and stability of mesophase during coal hydrogenation. 1. Formation of mesophase. Fuel. 57 (1978) 667-672.
DOI: 10.1016/0016-2361(78)90018-2
Google Scholar
[11]
S. Heng and M. Shibaoka, Hydorgenation of the inertinite macerals of Bayswater coal. Fuel. 62 (1983) 610-612.
DOI: 10.1016/0016-2361(83)90236-3
Google Scholar
[12]
D. Gray, G. Barrass, J. Jezko and J. R. Kershaw, Relations between hydroliquefaction behaviour and the organic properties of a variety of South African coals. Fuel. 59 (1980) 146-150.
DOI: 10.1016/0016-2361(80)90157-x
Google Scholar
[13]
D. Borah, M. Barua, M. K. Baruah, Dependence of pyrite concentration on kinetics and thermodynamics of coal pyrolysis in non-isothermal systems. Fuel Process. Technol. 86 (2005) 977-993.
DOI: 10.1016/j.fuproc.2004.11.016
Google Scholar
[14]
T. Kabe, M. Saito, W. Qian and A. Ishihara, Elucidation of hydrogen mobility in coal using a tritium pulse tracer method. Hydrogen exchange reaction of coal with tritiated gaseous hydrogen. Fuel. 79 (2000) 311-316.
DOI: 10.1016/s0016-2361(99)00165-9
Google Scholar
[15]
A. Ishihara, D. Nishigori, M. Saito, I P. Sturisna, W. Qian and T. Kabe, Elucidation of hydrogen mobility in functional groups of coals using tritium tracer methods. Energy & Fuels. 16 (2002) 32-39.
DOI: 10.1021/ef010149b
Google Scholar
[16]
F. J. Derbyshire and D. D. Whitehurst, Study of coal conversion in polycondensed aromatic compounds. Fuel. 60 (1981) 655-662.
DOI: 10.1016/0016-2361(81)90213-1
Google Scholar
[17]
H. Rottendorf and M. A. Wilson, Effects of in-situ mineral matter and a nickel-molybdenum catalyst on hydrogenation of Liddell coal. Fuel. 59 (1980) 175-180.
DOI: 10.1016/0016-2361(80)90162-3
Google Scholar
[18]
M. G. Thomas, T. D. Padrick, F. V. Stohl and H. P. Stephens, Decomposition of pyrite under coal liquefaction conditions: a kinetic study. Fuel. 61 (1982) 761-764.
DOI: 10.1016/0016-2361(82)90253-8
Google Scholar
[19]
H. Nagaishi, H. Moritomi, Y. Sanada and T. Chiba, Evaluation of coal reactivity for liquefaction based on kinetic characteristics. Energy & Fuels. 2 (1988) 522-528.
DOI: 10.1021/ef00010a019
Google Scholar
[20]
A. Chadha, R. K. Sharma, C. D. Stinespring and D. B. Dadyburjor, Iron sulfide catalysts for coal liquefaction prepared using a micellar technique. Ind. Eng. Chem. 35 (1996) 2916-2919.
DOI: 10.1021/ie950694y
Google Scholar
[21]
G. T. Hager, X. X. Bi, P. C. Eklund, E. N. Givens and F. J. Derbyshire, Energy & Fuels. 8 (1994) 88-93.
Google Scholar
[22]
D. W. Matson, J. C. Linehan, J. G. Darab and M. F. Buehler, Nanophase iron-based liquefaction catalysts: synthesis, characterization, and model compound reactivity. Energy & Fuels. 8 (1994) 10-18.
DOI: 10.1021/ef00043a002
Google Scholar
[23]
Z. Liu, J. Yang, J. W. Zondlo, A. H. Stiller and D. B. Dadyburjor, In situ impregnated iron-based catalysts for direct coal liquefaction. Fuel. 75 (1996) 51-57.
DOI: 10.1016/0016-2361(95)00226-x
Google Scholar
[24]
K. Miki, Y. Yamamoto, A. lnaba and Y. Sato, Liquefaction of iron-loaded subbituminous coal in the presence of a sulphur source. Fuel. 71 (1992) 825-829.
DOI: 10.1016/0016-2361(92)90137-d
Google Scholar