[1]
S.S. Chang; Y. Chu. On generalized inequalities for fuzzy mappings, Fuzzy sets and systems. 1989, 32 (3), 359-367.
DOI: 10.1016/0165-0114(89)90268-6
Google Scholar
[2]
S.S. Chang; N.J. Huang. Generalized quasi-complementarity problems for a pair of fuzzy mappings, J. Fuzzy Math. 1996, 4, 343-354.
Google Scholar
[3]
S.S. Chang; N.J. Huang. Generalized complementarity problems for fuzzy mapping. Fuzzy sets and systems, 1993, 55 (3), 227-234.
DOI: 10.1016/0165-0114(93)90135-5
Google Scholar
[4]
M.A. Noor. Variational inequalities for fuzzy mappings-(Ⅰ), Fuzzy sets and systems. 1993, 55 (3), 309-312.
DOI: 10.1016/0165-0114(93)90257-i
Google Scholar
[5]
A. Hassouni; A. Moudafi. A perturbed algorithm for variational inclusions. J. Math. Ana. Appl. 1994, 185 (3), 706-712.
DOI: 10.1006/jmaa.1994.1277
Google Scholar
[6]
S. Adly. Peturbed algorithm and sensitivity for a general class of variational inclusions, J. Math. Anal. Appl., 1996, 201 (2), 609-630.
Google Scholar
[7]
S.H. Shim; S.M. Kang; N.J. Huang; Y.J. Cho. Generalized set-valued strongly nonlinear quasi-variational inclusions, Indian J. Pure Appl. Math., 2000, 31 (9), 1113-1122.
Google Scholar
[8]
Zeqing Liu; Lokenath Debnath; Shin Min Kang; Jeong Sheok Ume. Completely generalized multivalued nonlinear quasi-variational inclusions, IJMMS, 2002, 30 (10), 593-604.
DOI: 10.1155/s0161171202108283
Google Scholar
[9]
M.A. Noor. Generalized set-valued variational inclusions and resolvent equations. J. Math. Anal. Appl., 2000, 228, 206-220.
DOI: 10.1006/jmaa.1998.6127
Google Scholar
[10]
Chang S. S. Set-valued variational inclusions in Banach spaces. J. Math. Anal. Appl. 2000, 248, 438-454.
DOI: 10.1006/jmaa.2000.6919
Google Scholar