Alternating Direction Method of Solving Nonlinear Programming with Inequality Constrained

Article Preview

Abstract:

This paper, a new class of augmented Lagrange functions with the new NCP function is proposed for the minimization of a smooth function subject to inequality constraints. Under some conditions, we prove of the equivalences of the KKT point and local point and globe point between primal constrained nonlinear programming problem and the new unconstrained problem. By the character of augmented Lagrange function, the algorithm which uses alternating direction method is constructed and proved convergence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2107-2111

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Di Pillo, L. Grippo. A new class of augmented Lagrange in nonlinear}, Mathematical SIAM J.Control Opt., No. 17, pp.616-628. (1990).

Google Scholar

[2] G. Di Pillo, L. Grippo. An augmented Lagrangian for inequality contraints in nonlinear programming problems, Optimization Theorem and Applications, No. 36, pp.495-519. (1982).

DOI: 10.1007/bf00940544

Google Scholar

[3] G. Di Pillo, S. Lucidi. an exact augmented lagrangian functions in nonlinear programming problem , New York: Plenum Press, pp.85-100. (1996).

DOI: 10.1007/978-1-4899-0289-4_7

Google Scholar

[4] D, G, Pu. A class of augmented Lagrangian multiplier function, Journal of Institute of Railway Technology, No. 5, p.45. (1984).

Google Scholar

[5] D. G. Pu, W. Tian. Globally inexact generalized Newton methods for nonsmooth equation, J. J. of Computational and Applied Mathematics. (20): pp.289-300. (2002).

DOI: 10.1016/s0377-0427(01)00364-8

Google Scholar

[6] K. D. Li, D. G. Pu. A Class of New Lagrangian Multiplier Methods, Opt. Researcher. No. 10(4) pp.9-22. (2006).

Google Scholar

[7] Y. F. Shao, D. G. Pu. A Class of New Lagrangian Multiplier Methods with NCP function, Journal of Tongji Univesity, No. 36(5), pp.695-698. (2008).

Google Scholar

[8] A. P. Jiang, D. G. Pu. Koszul resolutions, Trans Amer Math Soc, No. 152 , pp.39-60. (1970).

Google Scholar

[9] D. G. Pu, J. zhu. New Lagrangian Multiplier Methods. New Lagrangian Multiplier Methods, Journal of Tongji Univesity, 38(90), pp.: 1387-1391. (2010).

Google Scholar

[10] H. D. Yu, C. X. Xu, D. G. Pu. Smooth Complementarily Function and 2-Regular Solution of Complementarity Problem, Journal of Henan University of Science. No. 32(1), pp.68-71. (2011).

Google Scholar