[1]
B. Drafts, Acoustic wave technology sensors, IEEE T. Micro. W. Theory. 49(2001) 795–802.
Google Scholar
[2]
R. -D. Wang, Y. -Y. Chen, and T. -T. Wu, A surface acoustic wave impedance loaded sensor for wireless humidity measurement, J. Acoust. Soc. Am. 123(2008) 4969-4973.
Google Scholar
[3]
H. Oh, K. Lee, K. Eun, S. -H. Choa, and S. S. Yang, Development of a high-sensitivity strain measurement system based on a SH SAW sensor, J. Micromech. Microeng. 22 (2012) 25002-25011.
DOI: 10.1088/0960-1317/22/2/025002
Google Scholar
[4]
A. Binder and R. Fachberger, Wireless SAW Temperature Sensor System for High-Speed High-Voltage Motors, IEEE Sens. J. 11 (2011) 966–970.
DOI: 10.1109/jsen.2010.2076803
Google Scholar
[5]
S. L. Bratton, R. M. Chestnut, J. Ghajar, VII. Intracranial Pressure Monitoring Technology, J. Neuro. Traum. 24 (2007) 45–54.
Google Scholar
[6]
A. Pohl, F. Seifert, and S. Member, Wirelessly Interrogable Surface Acoustic Wave Sensors for Vehicular Applications, IEEE T. Instrum. Meas. 46 (1997) 1031–1038.
DOI: 10.1109/19.650822
Google Scholar
[7]
K. Lee, W. Wang, T. Kim, and S. Yang, A novel 440 MHz wireless SAW microsensor integrated with pressure–temperature sensors and ID tag, J. Micromech. Microeng. 17 (2007) 515–523.
DOI: 10.1088/0960-1317/17/3/014
Google Scholar
[8]
W. Wang, K. Lee, T. Kim, S. Yang, and I. Park, Pressure Sensitivity Evaluation of Passive SAW Microsensor Integrated with Pressure-Temperature and ID Tag on 41°-YX LiNbO3, IEEE International Conference on Solid-State Sensors, Actuators and Microsystems. (2007).
DOI: 10.1109/sensor.2007.4300538
Google Scholar
[9]
B. Dixon, V. Kalinin, J. Beckley, and R. Lohr, A Second Generation In-Car Tire Pressure Monitoring System Based on Wireless Passive SAW Sensors, 2006 IEEE International Frequency Control Symposium and Exposition. (2006) 374–380.
DOI: 10.1109/freq.2006.275414
Google Scholar
[10]
T. E. Parker and H. Wichansky, Temperature-compensated surface-acoustic-wave devices with SiO2 film overlays, J. Appl. Phys. 50 (1979)1360-1369.
DOI: 10.1063/1.326116
Google Scholar
[11]
X. Gong, X. Shang, and D. Zhang, Study on SAW Characteristics of Amorphous-TeO2/36Y-X LiTaO3 Structures, IEEE International Ultrasonics Symposium Proceedings. (2008) 1011–1012.
Google Scholar
[12]
Y. Lee, S. Lee, and Y. Roh, Design of withdrawal-weighted SAW filters, IEEE T. Ul. Trason. Ferr. 49 (2002) 337–344.
DOI: 10.1109/58.990949
Google Scholar
[13]
J. H. C. W. richard smith, Henry M. Gerard, Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE T. Microw. Theory. 17 (1969) 856–864.
DOI: 10.1109/tmtt.1969.1127075
Google Scholar
[14]
K. Hashimoto, Simulation of Surface Acoustic Wave Devices, Jpn. J. Appl. Phys. 45 (2006) 4423–4428.
DOI: 10.1143/jjap.45.4423
Google Scholar
[15]
A. J. Slobodnik Jr, The temperature coefficients of acoustic surface wave velocity and delay on Lithium Niobate, Lithium Tantalate, Quartz and Tellurium Dioxide, (1971).
Google Scholar
[16]
J. M. Carcione, Wave fields in real media-wave propagation in anisotropic, an elastic and porous media, Elsevier, (2001).
DOI: 10.1016/b978-0-32-398343-3.00010-6
Google Scholar
[17]
Ho, K. C., Chan, Y. T., and Inkol R., A digital quadrature demodulation system, IEEE T. Aero. Elec. Sys. 32 (1996) 1218-1226.
DOI: 10.1109/7.543843
Google Scholar
[18]
B. D. Zaitsev, I. E. Kuznetsova, S. G. Joshi, and A. S. Kuznetsova, New method of change in temperature coefficient delay of acoustic waves in thin piezoelectric plates, IEEE T. Ul. Trason. Ferr. 53 (2006) 2113–2120.
DOI: 10.1109/tuffc.2006.151
Google Scholar
[19]
B. T. Sturtevant and M. Pereira da Cunha, Assessment of langatate material constants and temperature coefficients using SAW delay line measurements, IEEE T. Ul. Trason. Ferr. 57 (2010) 533–539.
DOI: 10.1109/tuffc.2010.1444
Google Scholar
[20]
H. Nakanishi, H. Nakamura, T. Tsurunari, J. Fujiwara, Y. Hamaoka, and K. Hashimoto, Good temperature coefficient of frequency SAW resonator on a SiO2/Al/LiNbO3 structure, 2010 IEEE International Ultrasonics Symposium Proceeding. (2010) 1298–1301.
DOI: 10.1109/ultsym.2010.5935465
Google Scholar