Effect of Minimum Quantity Cooling Lubrication (MQCL) on Chip Morphology and Surface Roughness in Turning Low Carbon Steels

Article Preview

Abstract:

The paper presents the results of research on the effect produced by modern cooling methods on the chip shapes and surface roughness when finish turning of ASTM A53 and AISI 1010 low carbon steels. Dry cutting, cooling by compressed air and the Minimum–Quantity–Cooling–Lubrication (MQCL) method were compared. The MQCL method is more effective for machining low carbon steel and ensures a usable chip shape and lesser surface roughness. Depending on the cutting conditions, the efficiency of the MQCL method is 10 to 30 % higher compared to dry machining. Examples of experimental investigations about reducing the use of cooling lubricant substances in turning process can be found in the open literature [1, 2].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-42

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Krolczyk, P. Nieslony, S. Legutko, Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions, Journal of Materials Engineering and Performance. 23, 3 (2014) 859-866.

DOI: 10.1007/s11665-013-0832-4

Google Scholar

[2] G. Krolczyk, S. Legutko, A. Stoic, Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process, Tehnički Vjesnik - Technical Gazette. 20, 6 (2013) 1077-1080.

Google Scholar

[3] N. King, L. Keranen, K. Gunter, J. Sutherland, Wet Versus Dry Turning, A Comparison of Machining Costs, Product Quality, and Aerosol Formation. SAE Paper 2001, SP-1579.

DOI: 10.4271/2001-01-0343

Google Scholar

[4] D.P. Adler, W.S. Hii, D.J. Michalek, J.W. Sutherland, Examining the Role of Gutting Fluids and Efforts to Address Associated Enviromental/Health Concerns, Machining Science and Technology. 10, 1 (2006) 23-58.

DOI: 10.1080/10910340500534282

Google Scholar

[5] C.H. Li, Y.L. Hou, S.C. Xiu, G.Q. Cai, Application of lubrication theory to near-dry-green grinding–feasibility analysis, Advanced Materials Research. 44–46 (2008) 135-142.

DOI: 10.4028/www.scientific.net/amr.44-46.135

Google Scholar

[6] H.W. Rossmoore, Microbiology of Metalworking Fluids, Deterioration, Disease and Disposal, Lubrication Engineering 51, 2 (1995), 113-130.

Google Scholar

[7] H. Honma, K Yokogawa, Y. Yokogawa, Study of environment conscious CBN cooling air grinding technology. Int. J. of the Japan Society for Precision Eng. 62, 11 (1996) 1638-1642.

DOI: 10.2493/jjspe.62.1638

Google Scholar

[8] F. Klocke, G. Eisenblätter, Dry machining, CIRP Annals – Manufacture Technology. 46, 2 (1997) 519-526.

DOI: 10.1016/s0007-8506(07)60877-4

Google Scholar

[9] J.W. Sutherland, V.N. Kulur, N.C. King, An Experimental Investigation of Air Quality in Wet and Dry Turning, CIRP Annals – Manufacture Technology. 49, 1 (2000) 61-64.

DOI: 10.1016/s0007-8506(07)62896-0

Google Scholar

[10] D. Kammermeier, H. Kauper, W. Borchert, Die zweite Generation der Trockenzerspanung heißt High Performance Cutting (HPC). In: Weinert, K. (Ed. ), Spanende Fertigung; Vulkan-Verlag, Essen, 2001, pp.136-150.

Google Scholar

[11] N.R. Dhar, M. Kamruzzaman, M. Ahmed, Effect of minimum quantity lubrication on tool wear and surface roughness in turning AISI-4340 steel, J. of Mat. Proc. Techn. 172 (2006) 299-304.

DOI: 10.1016/j.jmatprotec.2005.09.022

Google Scholar

[12] H.A. Kishawy, M. Dumitrescu, E. -G. Ng, M.A. Elbestawi, Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, International Journal of Machine Tools & Manufacture. 45 (2005).

DOI: 10.1016/j.ijmachtools.2004.07.003

Google Scholar

[13] V.N. Gaitonde, S.R. Karnik, J. P Davim, Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass, J. of Materials Processing Techn. 204 (2008) 459-464.

DOI: 10.1016/j.jmatprotec.2007.11.193

Google Scholar

[14] B. Tasdelen, H. Thordenberg, D. Olofsson, An experimental investigation on contact length during minimum quantity lubrication machining, J. of Mat. Proc. Techn. 203 (2008) 221-231.

DOI: 10.1016/j.jmatprotec.2007.10.027

Google Scholar

[15] M.J. Hadad, T. Tawakoli, M.H. Sadeghi, B. Sadeghi, Temperature and energy partition in minimum quantity lubrication-MQL grinding process, International Journal of Machine Tools & Manufacture. 54–55 (2012) 10-17.

DOI: 10.1016/j.ijmachtools.2011.11.010

Google Scholar

[16] R.B. Statnikov, A. Statnikov, The Parameter Space Investigation Method Toolkit, Artech House, Boston/London, (2011).

Google Scholar