[1]
G. Krolczyk, P. Nieslony, S. Legutko, Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions, Journal of Materials Engineering and Performance. 23, 3 (2014) 859-866.
DOI: 10.1007/s11665-013-0832-4
Google Scholar
[2]
G. Krolczyk, S. Legutko, A. Stoic, Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process, Tehnički Vjesnik - Technical Gazette. 20, 6 (2013) 1077-1080.
Google Scholar
[3]
N. King, L. Keranen, K. Gunter, J. Sutherland, Wet Versus Dry Turning, A Comparison of Machining Costs, Product Quality, and Aerosol Formation. SAE Paper 2001, SP-1579.
DOI: 10.4271/2001-01-0343
Google Scholar
[4]
D.P. Adler, W.S. Hii, D.J. Michalek, J.W. Sutherland, Examining the Role of Gutting Fluids and Efforts to Address Associated Enviromental/Health Concerns, Machining Science and Technology. 10, 1 (2006) 23-58.
DOI: 10.1080/10910340500534282
Google Scholar
[5]
C.H. Li, Y.L. Hou, S.C. Xiu, G.Q. Cai, Application of lubrication theory to near-dry-green grinding–feasibility analysis, Advanced Materials Research. 44–46 (2008) 135-142.
DOI: 10.4028/www.scientific.net/amr.44-46.135
Google Scholar
[6]
H.W. Rossmoore, Microbiology of Metalworking Fluids, Deterioration, Disease and Disposal, Lubrication Engineering 51, 2 (1995), 113-130.
Google Scholar
[7]
H. Honma, K Yokogawa, Y. Yokogawa, Study of environment conscious CBN cooling air grinding technology. Int. J. of the Japan Society for Precision Eng. 62, 11 (1996) 1638-1642.
DOI: 10.2493/jjspe.62.1638
Google Scholar
[8]
F. Klocke, G. Eisenblätter, Dry machining, CIRP Annals – Manufacture Technology. 46, 2 (1997) 519-526.
DOI: 10.1016/s0007-8506(07)60877-4
Google Scholar
[9]
J.W. Sutherland, V.N. Kulur, N.C. King, An Experimental Investigation of Air Quality in Wet and Dry Turning, CIRP Annals – Manufacture Technology. 49, 1 (2000) 61-64.
DOI: 10.1016/s0007-8506(07)62896-0
Google Scholar
[10]
D. Kammermeier, H. Kauper, W. Borchert, Die zweite Generation der Trockenzerspanung heißt High Performance Cutting (HPC). In: Weinert, K. (Ed. ), Spanende Fertigung; Vulkan-Verlag, Essen, 2001, pp.136-150.
Google Scholar
[11]
N.R. Dhar, M. Kamruzzaman, M. Ahmed, Effect of minimum quantity lubrication on tool wear and surface roughness in turning AISI-4340 steel, J. of Mat. Proc. Techn. 172 (2006) 299-304.
DOI: 10.1016/j.jmatprotec.2005.09.022
Google Scholar
[12]
H.A. Kishawy, M. Dumitrescu, E. -G. Ng, M.A. Elbestawi, Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, International Journal of Machine Tools & Manufacture. 45 (2005).
DOI: 10.1016/j.ijmachtools.2004.07.003
Google Scholar
[13]
V.N. Gaitonde, S.R. Karnik, J. P Davim, Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass, J. of Materials Processing Techn. 204 (2008) 459-464.
DOI: 10.1016/j.jmatprotec.2007.11.193
Google Scholar
[14]
B. Tasdelen, H. Thordenberg, D. Olofsson, An experimental investigation on contact length during minimum quantity lubrication machining, J. of Mat. Proc. Techn. 203 (2008) 221-231.
DOI: 10.1016/j.jmatprotec.2007.10.027
Google Scholar
[15]
M.J. Hadad, T. Tawakoli, M.H. Sadeghi, B. Sadeghi, Temperature and energy partition in minimum quantity lubrication-MQL grinding process, International Journal of Machine Tools & Manufacture. 54–55 (2012) 10-17.
DOI: 10.1016/j.ijmachtools.2011.11.010
Google Scholar
[16]
R.B. Statnikov, A. Statnikov, The Parameter Space Investigation Method Toolkit, Artech House, Boston/London, (2011).
Google Scholar