Teodor: A Semi-Autonomous Search and Rescue and Demining Robot

Article Preview

Abstract:

In this paper, we present a ground robotic system which is developed to deal with rough outdoor conditions. The platform is to be used as an environmental monitoring robot for 2 main application areas: - Humanitarian demining: The vehicle is equipped with a specialized multi-channel metal detector array. An unmanned aerial system supports it for locating suspected locations of mines, which can then be confirmed by the ground vehicle. - Search and rescue: The vehicle is equipped with human victim detection sensors and a 3D camera enabling it to assess the traversability of the terrain in front of the robot in order to be able to navigate autonomously. The paper discusses both the mechanical design of these platforms as the autonomous perception capabilities on board of these vehicles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-605

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, A.M. Erkmen, Search and Rescue Robotics, in Springer Handbook of Robotics, pp.1151-1173, (2008).

DOI: 10.1007/978-3-540-30301-5_51

Google Scholar

[2] A. Finn, A. Jacoff, M. Del Rose, B. Kania, J. Overholt, U. Silva, J. Bornstein, Evaluating autonomous ground-robots, J. Field Robotics 29(5), pp.689-706, (2012).

DOI: 10.1002/rob.21433

Google Scholar

[3] E. Colon, G. De Cubber, H. Ping, J.C. Habumuremyi, H. Sahli, Y. Baudoin, Integrated robotic systems for Humanitarian Demining, International Journal of Advanced Robotic Systems, 4(2), (2007).

DOI: 10.5772/5694

Google Scholar

[4] I. Doroftei, Y. Baudoin, A concept of walking robot for humanitarian demining, Industrial Robot: An International Journal 39 (5), pp.441-449, (2012).

DOI: 10.1108/01439911211249733

Google Scholar

[5] E. Colon, P. Hong, J. -C. Habumuremyi, I. Doroftei, Y. Baudoin, H. Sahli, D. Milojevic, Weemaels, An Integrated robotic system for antipersonnel mines detection, Control Engineering Practice 10, pp.1283-1291, (2002).

DOI: 10.1016/s0967-0661(02)00090-4

Google Scholar

[6] D. Doroftei, E. Colon, G. De Cubber, A Behaviour-Based Control and Software Architecture for the Visually Guided Robudem Outdoor Mobile Robot, Journal of Automation Mobile Robotics and Intelligent Systems, 2, (2008).

Google Scholar

[7] Y. Baudoin, D. Doroftei, G. De Cubber, S.A. Berrabah, C. Pinzon, F. Warlet, J. Gancet, E. Motard, M. Ilzkovitz, L. Nalpantidis, View-finder: robotics assistance to fire-fighting services and crisis management, IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), (2009).

DOI: 10.1109/ssrr.2009.5424172

Google Scholar

[8] D. Doroftei, G. De Cubber, E. Colon, Y. Baudoin, Behavior based control for an outdoor crisis management robot, Proceedings of the IARP International Workshop on Robotics for Risky Interventions and Environmental Surveillance, (2009).

Google Scholar

[9] Y. Baudoin, J. Penders, Robotics Assistance to Protection Services: Users requirements, RISE 2008, Benicàssim, Spain, January (2008).

Google Scholar

[10] D. Doroftei, A. Matos, G. De Cubber, Designing Search and Rescue robots towards realistic user requirements, Advanced Concepts in Mechanical Engineering, (2014).

DOI: 10.4028/www.scientific.net/amm.658.612

Google Scholar

[11] D. Doroftei, G. De Cubber, K. Chintamani, Towards collaborative human and robotic rescue workers, 5th International Workshop on Human-Friendly Robotics (HFR2012), (2012).

Google Scholar

[12] Telerob Gesellschaft für Fernhantierungstechnik mbH, EOD Robot tEODor, Product Description.

Google Scholar

[13] H. Balta, H. Wolfmayr, J. Braunstein, Y. Baudoin, Integrated Mobile Robot System for Landmine Detection, HUDEM2014.

Google Scholar

[14] Information on http: /www. microdrones. com/company/media-relations/md4-1000_Flyer_englisch_web. pdf.

Google Scholar

[15] G. De Cubber, D. Doroftei, D. Serrano, K. Chintamani, R. Sabino, S. Ourevitch, The EU-ICARUS project: developing assistive robotic tools for search and rescue operations, IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), (2013).

DOI: 10.1109/ssrr.2013.6719323

Google Scholar

[16] G. De Cubber, D. Serrano, K. Berns, K. Chintamani, R. Sabino, S. Ourevitch, D. Doroftei, C. Armbrust, T. Flamma, Y. Baudoin, Search and rescue robots developed by the European Icarus project, 7th Int. Workshop on Robotics for Risky Environments, (2013).

DOI: 10.1109/ssrr.2013.6719323

Google Scholar

[17] J. Bedkowski, A. Maslowski, G. De Cubber, Real time 3D localization and mapping for USAR robotic application, Industrial Robot: An International Journal, Vol. 39 Iss: 5, (2012).

DOI: 10.1108/01439911211249751

Google Scholar

[18] M. Bertozzi, A. Broggi, E. Cardarelli, R.I. Fedriga, L. Mazzei, and P.P. Porta, VIAC Expedition Toward Autonomous Mobility, Robotics and Automation Magazine, 18(3): 120-124, September (2011).

DOI: 10.1109/mra.2011.942490

Google Scholar

[19] H. Balta, G. De Cubber, D. Doroftei, Y. Baudoin, H. Sahli, Terrain Traversability Analysis for off-road robots using Time-Of-Flight 3D Sensing, 7th IARP International Workshop on Robotics for Risky Environment - Extreme Robotics, Saint-Petersburg, Russia, October (2013).

Google Scholar

[20] G. De Cubber, D. Doroftei, Multimodal terrain analysis for an all-terrain crisis Management Robot, IARP HUDEM, (2011).

Google Scholar