Constitutive Parameters of Mechanical Behaviour Law for Poly (Ether-Ether-Ketone) Based Composites with Carbon Nanotubes and Carbon Fibres

Article Preview

Abstract:

Phenomenological constitutive equations are applied successfully to predict stress-strain relationship for semi-crystalline polymers at high strain rates encountered in mechanical tests. The parameters of mechanical behaviour law for polymer composites with nanoscopic additives and carbon fibres can be identified by applying a known law over a lot of data obtained from compressive tests. The objective of this study is to investigate the applicability of the model G'Sell - Jonas in the case of poly (ether-ether-ketone) composites with carbon nanotubes and carbon fibres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-123

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Haudin, C. G'Sell, Introduction à la mécanique des polymères, INPL, Nancy, (1995).

Google Scholar

[2] Y. Tillier, Identification par analyse inverse du comportement mécanique des polymères solides; Application aux sollicitations multiaxiales et rapides. Thèse de doctorat, ENSMP, (1998).

Google Scholar

[3] Y. Duan, A. Saigal, R. Greif, M. A. Zimmerman. 2003. Modeling multiaxial impact behavior of a glassy polymer, Mater. Res. Innov. 7 (2003) 10-18.

DOI: 10.1080/14328917.2003.11784753

Google Scholar

[4] G. Andrei, D. Dima, L. Andrei, Lightweight magnetic composites for aircraft applications, J. Optoelectron. Adv. M. 8 (2006) 726-730.

Google Scholar

[5] C. G'Sell, H. El Bari, J. Perez, J. Y. Cavaille, G. P. Johari, Effect of plastic deformation on the microstructure and properties of amorphous polycarbonate. Mater. Sci. Eng. A 110 (1989) 223-229.

DOI: 10.1016/0921-5093(89)90174-3

Google Scholar

[6] L. Deleanu, I.G. Birsan, G. Andrei, M. Ripa, P. Badea, PTFE Composites and Water Lubrication. 1. Tribological Characterization, Mat. Plast. 44 (2007) 66-72.

Google Scholar

[7] O. Schang, N. Billon, J. M. Muracciole, F. Fernagut, Mechanical behavior of a ductile polyamide 12 during impact, Polym. Eng. Sci. 36(1996) 541-550.

DOI: 10.1002/pen.10440

Google Scholar

[8] L. Deleanu, G. Andrei, L. Maftei, C. Georgescu, A. Cantaragiu, Wear maps for a class of composites with polyamide matrix and glass spheres, J. Balk. Tribol. Assoc. 17 (2011) 371–379.

Google Scholar

[9] G. Andrei, D. Dima, I. G. Birsan, L. Andrei, A. Circiumaru, Effect of Ferrite Particles on Mechanical Behaviour of Glass Fibers Reinforced Polymer Composite, Mat. Plast. 46 (2009) 284-287.

Google Scholar

[10] M. Schobig, C. Bierogel, W. Grellmann, T. Mecklenburg, Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates. Polym. Test. 27 (2008) 893-900.

DOI: 10.1016/j.polymertesting.2008.07.006

Google Scholar

[11] M.T. Shaw, W. J. MacKnight, Introduction to polymer viscoelasticity, Wiley-Interscience, (2005).

Google Scholar

[12] D. Dima, G. Andrei, Investigation of the Effect of Fe3O4 Particles on the Interface of Gf-Pr-Fa Magnetic Composite, Materialwiss. Werkst. 34 (2003) 349-353.

Google Scholar

[13] D. Dima M. Murarescu, G. Andrei, 2010, Dispersion of carbon nanotubes coated with iron (III) oxide into polymer composite under oscillating magnetic field, Dig. J. Nanomater. Bios. 5 (2010) 1009-1014.

Google Scholar

[14] A. Circiumaru, G. Andrei, I. Birsan, A. Semenescu, 2009, Electrical Conductivity of Fabric Based Filled Epoxy Composites, Mat. Plast. 46 (2009) 211-214.

Google Scholar

[15] L. Ciupagea, G. Andrei, D. Dima, M. Murarescu, Specific heat and thermal expansion of polyester composites containing singlewall-, multiwall- and functionalized carbon nanotubes, Dig. J. Nanomater. Bios. 8 (2013) 1611 – 1619.

DOI: 10.4028/www.scientific.net/amm.657.382

Google Scholar

[16] M. Morarescu, D. Dima, G. Andrei, A. Circiumaru, Synthesis of polyester composites with functionalized carbon nanotubes by oxidative reactions and chemical deposition, Dig. J. Nanomater. Bios. 9 (2014) 653 –665.

Google Scholar