Research on Hot Deformation Behavior of 3003 Al Alloy Prepared by Different Melt-Treatment Methods

Article Preview

Abstract:

3003 Al alloy with different metallurgical quality were obtained by different melt-treatment methods, which were deformed by isothermal compression in the range of deformation temperature 300-500°C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. The results show that the material is sensitive to positive strain rate. The hot deformation activation energy (Q) bears linear relationship with inclusion content (H) of 3003 Al alloy prepared by different melt-treatment, Q=35.62 H+171.58, the activation energy of 3003 Al alloy prepared by high melt-treatment is the lowest (174.62 KJ×mol-1), which is beneficial to the material hot plastic deformation. The critical strain of 3003 Al alloy prepared by different melt-treatment methods is investigated through the work hardening rate. Finally, the critical conditions of the investigated alloy were determined to predict the dynamic recrystallization occurrence in the paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1611-1616

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Luan, T. Le, J. Nagata: Surf. Coat. Technol. Vol. 186 (2004), p.431.

Google Scholar

[2] R. Salghi, L. Bazzi, B. Hammouti, A. Bendou, A. Addie, S. Kertit: Prog. Org. Coat. Vol. 51 (2004) p.113.

Google Scholar

[3] J. Lacaze, S. Tierce, M.C. Lafont, Y. Thebault, N. Pébère, G. Mankowski, C. Blanc, H. Robidou, D. Vaumousse, D. Daloz: Mater. Sci. Eng. A, Vol. 413–414 (2005) p.317.

DOI: 10.1016/j.msea.2005.08.187

Google Scholar

[4] H.W. Huang, B.L. Ou: Mater. Sci. Eng. A, Vol. 30 (2009) p.2685.

Google Scholar

[5] C.L. Yeh, Y.F. Chen, C.Y. Wen, K.T. Li: Thermal Fluid Sci. Vol. 27 (2003) p.271.

Google Scholar

[6] G.A. Zhang, L.Y. Xu, Y.F. Cheng: Corrosion Science, Vol. 5 (2009) p.283.

Google Scholar

[7] W.C. Liu, T.J. Zhai, G. Morris: Scripta Materialia, Vol. 51 (2004) p.83.

Google Scholar

[8] J.J. Jonas: Mater. Sci. Eng. A, Vol. A184 (1994) p.155.

Google Scholar

[9] E.I. Poliak, J.J. Jonas: Acta Mater, Vol. 44(1996) p.127.

Google Scholar

[10] G.R. Stewart, J.J. Jonas, F. Montheillet: ISIJ Int, Vol. 44 (2004) p.1581.

Google Scholar

[11] S.H. Cho, S.I. Kim, Y.C. Yoo. J: Mater. Sci. Lett. Vol. 166 (1997) p.183.

Google Scholar

[12] G.S. Fu, W.Z. Chen, K.W. Qian: The Chinese Journal of Nonferrous Metals, Vol. 12 (2002) p.269.

Google Scholar

[13] G.S. Fu, F.S. Sun, L.Y. Ren, W.Z. Chen, K.W. Qian: Journal of Rare Earths, Vol. 20 (2002) p.61.

Google Scholar

[14] J.R. Cho, W.B. Bae, W.J. Hwang, P. Hartley: Journal of Materials Processing Technology, Vol. 118 (2001) p.356.

Google Scholar

[15] E. Cerri, S. Spigarelli, E. Evangelista, P. Cavaliere: Mater. Sci. Eng. A, Vol. A324 (2002) p.157.

Google Scholar

[16] S. Spigarelli, E. Evangelista, H.J. Mcqueen: Scr. Mater. Vol. 179 (2003) p.49.

Google Scholar

[17] F. Bardi, M. Cabibbo, E. Evangelista, S. Spigarelli, M. vukcevic: Mater. Sci. Eng. A, Vol. A339 (2003) p.43.

Google Scholar

[18] G.S. Fu, W.D. Yan, H.L. Chen, G.Q. Chen, B. Ma: Special Casting & Nonferrous Alloys, Vol. 29 (2009) p.604.

Google Scholar

[19] J.J. Jonas, C.M. Sellars, W.J. Mcg: Metall. Reviews, Vol. 130 (1969) p.1.

Google Scholar

[20] E.I. Poliak, J.J. Jonas: ISIJ Int, Vol. 43 (2003) p.684.

Google Scholar

[21] N. Christodoulou, J.J. Jonas: Acta Metallurgica, Vol. 32 (1984) p.1655.

Google Scholar

[22] A. Manonukul, F.P.E. Dunne: Acta Mater. Vol. 47 (1999) p.4339.

Google Scholar

[23] S.I. Kim, Y.C. Yoo: Mater. Sci. Technol. Vol. 18 (2002) p.160.

Google Scholar

[24] M.M. Myshlyaev, H.J. Mcqueen, A. Mwembela, E. Konopleva: Mater. Sci. Eng. A, Vol. 337 (2002) p.121.

Google Scholar

[25] A. Mwembela, E.B. Konopleva, H.J. Mcqueen: Scripta Materialia, Vol. 37 (1997) p.1789.

DOI: 10.1016/s1359-6462(97)00344-8

Google Scholar