Directed Control for the Thermal Diffusion Fractal Growth of Thin Plate

Article Preview

Abstract:

A new theoretical model for the directed thermal diffusion fractalgrowth of thin plate with environmental disturbance is considered to control thediffusion direction. Using the norm theory, a quantitative relationship of such anoptimal control problem is obtained, and the following simulations show that therelationship controls the diffusion direction effectively. In addition, the comparisonof the dimensions between the diffusion with round controlled region and thegrowth with piecewise region illustrates that the controlled regions play differentroles in the real complex fractal growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-372

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. C. Ball and E. Somfai: Phys. Rev. Lett. Vol. 89 (2002), pp.135503-4.

Google Scholar

[2] J. Mathiesen and M. H. Jensen: Phys. Rev. Lett. Vol. 88 (2002), pp.235505-4.

Google Scholar

[3] Y. Gazit, D. A. Berk, M. Leunig, L. T. Baxter and R. K. Jain: Phys. Rev. Lett. 75 (1995), pp.2428-2431.

DOI: 10.1103/physrevlett.75.2428

Google Scholar

[4] H. M. Singer, I. Singer and J. H. Bilgram: Phys. Rev. Lett. 103 (2009), pp.015501-4.

Google Scholar

[5] E. Khain and L. M. Sander: Phys. Rev. Lett. 96 (2006), pp.188103-4.

Google Scholar

[6] T. A. Witten and L. M. Sander: Phys. Rev. Lett. 47 (1981), pp.1400-1403.

Google Scholar

[7] L. Niemeyer, L. Pietronero and H. J. Wiesmann: Phys. Rev. Lett. 52 (1984), pp.1033-1036.

Google Scholar

[8] D. Perugini and G. Poli: Contrib. Mineral. Petr. 153 (2007), pp.493-508.

Google Scholar

[9] S. S. Tan, A. H. Su and W. T. Ford: Eur. Phys. J. E. 27 (2008), pp.205-216.

Google Scholar

[10] W. T. Coakley, D. Bazou, J. Morgan, G. A. Foster, C. W. Archer, K. Powell, K. A. J. Borthwick, C. Twomey and J. Bishop: Colloid. Surface. 34 (2004), pp.221-232.

DOI: 10.1016/j.colsurfb.2004.01.002

Google Scholar

[11] D. Yamazaki, S. Suetsugu, H. Mikl, Y. Kataeka, S. Nishikawa, T. Fujiwara, N. Yeshida and T. Takenawa: Nature 424 (2003), pp.452-456.

Google Scholar

[12] C. Stritt, S. Stern, K. Harting, T. Manke, D. Sinske, H. Schwarz, M. Vingron, A. Nordheim and B. Knöll: Nature 12 (2009), pp.418-427.

DOI: 10.1038/nn.2280

Google Scholar

[13] Q. J. He and Z. L. Huang: Cryst. Res. Technol. 42 (2006), pp.460-465.

Google Scholar

[14] J. B. Recknor, D. S. Sakaguchi and S. K. Mallapragada: Biomaterials 27 (2006), pp.4098-4108.

Google Scholar

[15] J. T. Sadowski, G. Sazaki, S. Nishikata, A. Al-Mahboob, Y. Fujikawa, K. Nakajima, R. M. Tromp and T. Sakurai: Phys. Rev. Lett. 98 (2007), pp.046104-4.

DOI: 10.1103/physrevlett.98.046104

Google Scholar

[16] M. P. Larsson and S. Lucyszyn: Rom. J. Inform. Sci. Tech. 8 (2005), pp.305-320.

Google Scholar

[17] G. P. Lepinski, D. D. M. Wayner and R. A. Welkow: Nature 406 (2000), pp.48-51.

Google Scholar

[18] C. H. Gu, D. Q. LI, S. X. Chen, S. M. Zheng and Y. J. Tan: Equations of Mathematical Physics (Higher Education Press (in Chinese), Beijing, 2002).

Google Scholar

[19] T. A. M. Haemers, D. G. Rickerby and E. J. Mittemeijer: Modelling Simul. Mater. Sci. Eng. 7 (1999), pp.233-252.

Google Scholar

[20] H. Goldstein: Classical Mechanics ( Addison Wesley, 2002).

Google Scholar

[21] J. C. Bradley, H. M. Chenm, J. Crawford, J. Eckert, K. Ernazarova, T. Kurzeja, M. Lin, M. McGee, W. Nadler and S. G. Stephens: Nature 389 (1997), pp.268-276.

DOI: 10.1038/38464

Google Scholar

[22] E. Khain and L. M. Sander: Phys. Rev. Lett. 96 (2006), pp.188103-4.

Google Scholar

[23] G. Ahlers: Physics 2 (2009), pp.74-80.

Google Scholar

[24] S. Komatsu, D. Kazami, H. Tanaka, Y. Moriyoshi, M. Shiratani and K. Okada: J. Appl. Phys. 99 (2006), pp.123512-6.

Google Scholar

[25] T. Tél, Á. Fülöp and T. Vicsek: Physica A Vol. 159 (1989), pp.155-166.

Google Scholar