A Parameter Selection Method for Support Vector Interval Regression Model

Article Preview

Abstract:

The support vector interval regression model is an effective method to estimate imprecise data. Parameters of this model is very important in order to obtain the excellent regression result. The flexible polyhedron search algorithm is a fast optimization algorithm. Based on the flexible polyhedron search algorithm, this paper proposes an automatic parameters selection method for the support vector interval regression model. Experiments illustrate the validity and applicability of the support vector interval regression model based on the flexible polyhedron search algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

626-630

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, (1995).

Google Scholar

[2] V. Vapnik, Statistical Learning Theory, Wiley, New York, (1998).

Google Scholar

[3] H. Tankaka, S. Uejima, and K. Asai, Fuzzy linear regression model[C]. Proc. Int. Conf. Appl. Syst. Res. Cybern., Acapulco, Mexico, 1980: 12–15.

Google Scholar

[4] H. Tanaka, S. Uejima, and K. Asai, Linear regression analysis with fuzzy model. IEEE. Trans. Syst., Man, Cybern., 1982, SMC-12(6): 903–907.

DOI: 10.1109/tsmc.1982.4308925

Google Scholar

[5] H. Tanaka. Fuzzy data analysis by possibilistic linear models[J]. Fuzzy Sets Syst., 1987(24): 363–375.

DOI: 10.1016/0165-0114(87)90033-9

Google Scholar

[6] Changha Hwang, Dug Hun Hong and Kyung Ha Seok. Support vector interval regression machine for crisp input and output data. Fuzzy Sets and Systems [J], 2006(157): 1114-1125.

DOI: 10.1016/j.fss.2005.09.008

Google Scholar

[7] CHEN Pengwei, WANG Jungying, LEE Hahnming, Model selection of SVMs using GA approach, Proc 2004 IEEE lnt Joint Conf on Neural Networks. Piscataway, NJ, pp.2035-2040, (2004).

DOI: 10.1109/ijcnn.2004.1380929

Google Scholar

[8] ZHENG Chunhong, JIAO Licheng, Automatic parameters selection for SVM based on GA, Proc of the 5th World Congress on Intelligent Control and Automation. Piscataway, NJ, pp.1869-1872, (2004).

DOI: 10.1109/wcica.2004.1341000

Google Scholar

[9] Himmelblau D. M Applied nonlinear programming[M] New York: McGraw-Hill. (1972).

Google Scholar

[10] Sheng-Fa Yuana, Fu-Lei Chu. Fault diagnostics based on particle swarm optimization and support vector machines [J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1787-1798.

DOI: 10.1016/j.ymssp.2006.07.008

Google Scholar