Efficient Synthesis of Functionalized 3-Aminopropanols

Article Preview

Abstract:

A series of α-aminophosphonate-functionalized 3-aminopropanols have been efficiently prepared and characterized by 1H, 13C, and 31P NMR and mass spectroscopy. The reaction conditions such as solvent and temperature were thoroughly investigated based on the three-component Kabachnik-Fields reaction. The experimental results revealed that moderate elevation of reaction temperature under solvent-free conditions was optimal for the synthesis of these types of compounds without forming the cyclized byproduct.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-70

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Schug, W. Lindner, Chem. Rev. Vol. 105 (2005), p.67.

Google Scholar

[2] K. Moonen, I. Lauryn, C.V. Stevens, Chem. Rev. Vol. 104 (2004), p.6177.

Google Scholar

[3] R.L. Hildebrand, T.O. Henderson, R.L. Hilderbrand, CRC: Boca Raton, FL, (1983), p.5.

Google Scholar

[4] N.P. Camp, P.C.D. Hawkins, P.B. Hitchcock, D. Gani, Bioorg. Med. Chem. Lett. Vol. 2 (1992), p.1047.

Google Scholar

[5] D. Green, G. Patel, S. Elgendy, J.A. Baban, E. Skordalakes, W. Husman, C.A. Goodwin, M. F. Scully, V. Kakkar, J. Deadman, Phosphorus Sulfur Silicon. Vol. 533 (1996), p.109.

DOI: 10.1080/10426509608545208

Google Scholar

[6] G. Forlani, L. Berlicki, M. Duo, G. Dziedziola, S. Giberti, M. Bertazzini, P. Kafarski, J. Agric. Food Chem. Vol. 61 (2013), p.6792.

DOI: 10.1021/jf401234s

Google Scholar

[7] N. Long, X.J. Cai, B.A. Song, S. Yang, Z. Chen, P.S. Bhadury, D.Y. Hu, L.H. Jin, W. Xue, J. Agric. Food Chem. Vol. 56 (2008), p.5242.

Google Scholar

[8] M.H. Chen, Z. Chen, B.A. Song, P.S. Bhadury, S. Yang, X.J. Cai, D.Y. Hu, W. Xue, S. Zeng, J. Agric. Food Chem. Vol. 57 (2009), p.1383.

Google Scholar

[9] F.R. Atherton, C.H. Hassall, R.W. Lambert, J. Med. Chem. Vol. 29 (1986), p.29.

Google Scholar

[10] J.G. Allen, F.R. Atherton, M.J. Hall, C.H. Hassall, S.W. Holmes, R.W. Lambert, L. J. Nisbet, P.S. Ringrose, Nature Vol. 272 (1978), p.56.

DOI: 10.1038/272056a0

Google Scholar

[11] G. Lavielle, P. Hautefaye, C. Schaeffer, J. A. Boutin, C.A. Cudennec, A. Pierre, J. Med. Chem. Vol. 34 (1991), p. (1998).

DOI: 10.1021/jm00111a012

Google Scholar

[12] R.J. Palmer, in: Encyclopedia of Polymer Science and Technology. Polyamides, Plastics, John Wiley & Sons, Inc, (2001).

Google Scholar

[13] L. Ubaghs, N. Fricke, H. Keul, H. Höcker, Macromol. Rapid Commun. Vol. 25 (2004), p.517.

DOI: 10.1002/marc.200300064

Google Scholar

[14] G. Prömpers, H. Keul, H. Höcker, Des. Monomers and Polym. Vol. 8 (2005), p.547.

Google Scholar

[15] V.P. Kukhar, H.R. Hudson, Wiley. (2000).

Google Scholar

[16] S. Bhagat, A. Chakraborti, J. Org. Chem. Vol. 72 (2007), p.1263.

Google Scholar

[17] E. Fields, J. Am. Chem. Soc. Vol. 74 (1952), p.1528.

Google Scholar

[18] Jenny Zamorano-Octaviano, Arely Hern´andez-Mart´ınez, Armando Ortega-Guevara, Irma Linzaga-Elizalde, and Herbert H¨opfl, Heteroatom Chemistry Vol. 17 (2006).

DOI: 10.1002/hc.20178

Google Scholar