[1]
L. Chen, X.L. Gong, W.H. Li, Effect of carbon black on the mechanical performances of magnetorheological elastomers, Polymer Testing. 27 (2008) 340-345.
DOI: 10.1016/j.polymertesting.2007.12.003
Google Scholar
[2]
H.X. Deng, X.L. Gong, L.H. Wang, Development of an adaptive tuned vibration absorber with magnetorheological elastomers, Smart Material Structures. 15 (2006) N111-N116.
DOI: 10.1088/0964-1726/15/5/n02
Google Scholar
[3]
X.L. Gong, G. Liao, S. Xuan, Full-field deformation of magnetorheological elastomer under uniform magnetic field, Applied Physics Letters. 100 (2012) 211909.
DOI: 10.1063/1.4722789
Google Scholar
[4]
G.J. Liao, X.L. Gong, S.H. Xuan, C.J. Kang, L.H. Zong, Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer, J. of Intelligent Material Systems and Structures. 23 (2011) 25-33.
DOI: 10.1177/1045389x11429853
Google Scholar
[5]
B. Wei, X.L. Gong, W. Jiang, Influence of polyurethane properties on mechanical performances of magnetorheological elastomers, J. of Applied Polymer Science. 116 (2010) 771-778.
Google Scholar
[6]
Y. Li, J. Li, B. Samali, Development and characterization of a magnetorheological elastomer based adaptive seismic isolator, Smart Materials and Structures. 22 (2013) 035005.
DOI: 10.1088/0964-1726/22/3/035005
Google Scholar
[7]
J. Fu, M. Yu, X.M. Dong, L.X. Zhu, Magnetorheological elastomer and its application on impact buffer, J. of Physics: Conference Series. 412 (2013) 012032.
DOI: 10.1088/1742-6596/412/1/012032
Google Scholar
[8]
S.A. Mazlan, I. Ismail, H. Zamzuri, A.Y. Abd Fatah, Compressive and tensile stresses of magnetorheological fluids in squeeze mode, International Journal of Applied Electromagnetics and Mechanics. 36 (2011) 327-337.
DOI: 10.3233/jae-2011-1371
Google Scholar
[9]
M. Zeinali, S.A. Mazlan, A.Y.A. Fatah and H. Zamzuri, Phenomenological dynamic model of magnetorheological damper using a neuro-fuzzy system, Smart Materials and Structures. 22 (2013) 125013.
DOI: 10.1088/0964-1726/22/12/125013
Google Scholar
[10]
I.M. Yazid, S.A. Mazlan, T. Kikuchi, H. Zamzuri and F. Imaduddin, Design of magnetorheological damper with a combination of shear and squeeze modes, Materials and Design. 54 (2014) 87-95.
DOI: 10.1016/j.matdes.2013.07.090
Google Scholar
[11]
F. Imaduddin, S.A. Mazlan, H. Zamzuri, A design and modeling review of rotary magnetorheological damper, Materials and Design. 51 (2013) 575-591.
DOI: 10.1016/j.matdes.2013.04.042
Google Scholar
[12]
X.L. Gong, Y. Fan, S. Xuan, Y. Xu, C. Peng, Control of damping properties of magnetorheological elastomers by using polycaprolactone as a temperature-controlling, Industrial & Engineering Chemistry Research. 51 (2012) 6395-6403.
DOI: 10.1021/ie300317b
Google Scholar
[13]
M. Kallio, The elastic and damping properties of magnetorheological elastomers, Doctoral Thesis, Tampere University of Technology, (2005).
Google Scholar
[14]
A. Boczkowska, S. Awietjan, Microstructure and properties of magnetorheological elastomers, in: A. Boczkowska (Eds. ), Advance elastomers – technology, properties and applications, InTech, New York, 2012, pp.147-178.
DOI: 10.5772/50430
Google Scholar
[15]
S.V. Kankala, N. Triantafyllidis, On finitely strained magnetorheological elastomers, J. of the Mechanics and Physics of Solids. 52 (2004) 2869-2908.
DOI: 10.1016/j.jmps.2004.04.007
Google Scholar
[16]
J.R. Watson, U.S. Patent 005609353A (1997).
Google Scholar
[17]
A.R. Badolato and R.P. Powlowski, U.S. Patent 006623364B2 (2003).
Google Scholar
[18]
R.B. Anderson, U.S. Patent 008152145B2 (2012).
Google Scholar
[19]
P.R. Marur, U.S. Patent 20130087985A1 (2013).
Google Scholar
[20]
F. Thorsteinsson, I. Gudmundsson and C. Lecomte, U.S. Patent 20130060349A1. (2013).
Google Scholar
[21]
J. Fu, M. Yu, X. M. Dong, L.X. Zhu, Magnetorheological elastomer and its application on impactbuffer, Journal of Physics: Conference Series. 412 (2013) 012032.
DOI: 10.1088/1742-6596/412/1/012032
Google Scholar
[22]
A.Z.B. Pokaad, K. Hudha, M.Z.B.M. Nasir, Ubaidillah, Simulation and experimental studies on the behaviour of a magnetorheological damper under impact loading, Int. J. Structural Engineering. 2 (2011) 164-187.
DOI: 10.1504/ijstructe.2011.039422
Google Scholar
[23]
J.R. Lopez, L.E. Segura, F.M.E. Freijo, Ultrasonic velocity and amplitude characterization of magnetorheologicalfluids under magnetic fields, J. of Magnetism and Magnetic Materials. 324 (2012) 222-230.
DOI: 10.1016/j.jmmm.2011.08.019
Google Scholar
[24]
Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubesand carbonyl iron particles as a microwave absorber, Carbon. 48 (2010) 4074-4080.
DOI: 10.1016/j.carbon.2010.07.014
Google Scholar