Dynamics of Scratch Drive Actuators during Stepwise Motion

Article Preview

Abstract:

In this paper, a comprehensive model is used to describe dynamic behavior of SDA and its components during stepwise motion. In this model, Hamilton’s principle and Newton's method are used to extract dynamic equations of the SDA plate and dynamic equation for the linear motion of SDA. Comparison between the modeling results and available experimental data shows that this model is very effective in predicting some design objectives such as step size and output force for this type of actuators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-110

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Akiyama and K. Shono: J. of Microelectromechanical Systems Vol. 2 (1993), p.106.

Google Scholar

[2] L. Li, J.G. Brown and D. Uttamchandani: J. Micromech. Microeng. Vol. 12 (2002), p.736.

Google Scholar

[3] Y. Kanamori, Y. Aoki, M. Sasaki, H. Hosoya and A. Wada: J. Micromech. Microeng. Vol. 15 (2005), p.118.

Google Scholar

[4] Y. Kanamori, H. Yahagi and K. Hane: Sens. Actuators A, Vol. 125 (2006), p.451.

Google Scholar

[5] P. Langlet, D. Collard, T. Akiyama and H. Fujita: in Proc. IEEE Int. Conference on Solid-State Sensors and Actuators (Transducers' 97), Chicago, IL, (1997), p.773.

Google Scholar

[6] R. J. Linderman and V. M. Bright: Sens. Actuators A Vol. 91 (2001), p.292.

Google Scholar

[7] T. Akiyama, D. Collard and H. Fujita: J. Microelectromechanical Systems Vol. 6 (1997), p.10.

Google Scholar

[8] L. Li, J.G. Brown and D. Uttamchandani: IEEE Proc. -Sci. Meas. Technol. Vol. 151 (2004), p.137.

Google Scholar

[9] Peyman Honarmandi, Jean W. Zu and Kamran Behdinan: Sens. and Actuators A: Physical Vol. 160 (2010), p.116.

Google Scholar

[10] S. Chen, C. Chang and W. Hsu: J. Micro/Nanolith. MEMS MOEMS Vol. 10 (2011), p.013016. 1.

Google Scholar

[11] M. Abtahi, Gh. Vossoughi and A. Meghdari: J. of Microelectromechanical Systems Vol. 22 (2013), p.1190.

Google Scholar

[12] M. Moghimi Zand and M .T. Ahmadian: Inter. J. of Mechanical Sciences Vol. 49 (2007), p.1226.

Google Scholar

[13] R. P. LaRose and K. D. Murphy: Nonlinear Dynamics Vol. 60 (2010), p.327.

Google Scholar

[14] J. A. Knapp and M. P. de Boer: J. of Microelectromechanical Systems Vol. 11 (2002), p.754.

Google Scholar

[15] F. W. Delrio, M. P. de Boer, E. D. Reedy Jr, P. J. Clews and M. L. Dunn: Nature Mater. Vol. 4 (2005), p.629.

Google Scholar

[16] A. H. Nayfeh and M. I. Younis: J. Micromech. Microeng. Vol. 14 (2003), p.170.

Google Scholar

[17] J. Ginsberg, in: ch. 5 in Engineering Dynamics, New York: Cambridge University Press (2008), p.229.

Google Scholar

[18] K. J. Åström and C. Canudas de Wit: IEEE Control Syst. Mag. Vol. 28 (2008), p.101.

Google Scholar

[19] F. Landolsi, Y. Sun, H. Lu, F. H. Ghorbel and J. Lou: Appl. Surf. Sci. Vol. 256 (2010), p.2577.

Google Scholar

[20] S. Lafaye, C. Gauthier and R. Schirrer: J. Mater. Sci. Vol. 41 (2006), p.6440.

Google Scholar

[21] S. Adibnazari, D. Naderi and F. Sharafbafi: Mat. and Design Vol. 29 (2008), p.1291.

Google Scholar