[1]
G. Otte, H. Rosenthal, Management of closed brackish-water system for high density fish culture by biological and chemical water treatment, J. Aquaculture. 18 (1979) 169–181.
DOI: 10.1016/0044-8486(79)90029-2
Google Scholar
[2]
H. Honda, Y. Watanaba, K. Kikuchi, N. Iwata, S. Takeda, H. Uemoto, T. Furata, M. Kiyono, High density rearing of Japanese Flounder, Paralichthys olivaceus with a closed seawater recirculation system equipped with a denitrification unit, J. Suisanzoshoku. 41 (1993).
Google Scholar
[3]
J. van Rijn, Y. Tal, H.J. Schreier, Denitrification in recirculating systems: theory and applications, J. Aquacultural Engineering. 34 (2006) 364-376.
DOI: 10.1016/j.aquaeng.2005.04.004
Google Scholar
[4]
A. Kamstra, J.W. van der Heul, The effect of denitrification on feed intake and feed conversion of European eel Anguilla anguilla L. in: H. Grizel, P. Kestermont (Eds. ), Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage. European Aquaculture Society Special Publication, Oostende, Belgium, 1998, p.128.
DOI: 10.1111/j.1365-2109.1996.tb01250.x
Google Scholar
[5]
G.J. Chris, van Bussel, P. Jan P. Schroeder, Sven Wuertz, Carsten Schulz, The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima), J. Aquaculture. 326 (2012) 163-167.
DOI: 10.1016/j.aquaculture.2011.11.019
Google Scholar
[6]
A. Kapoor, Nitrate removal from drinking water review, J. Journal of environmental engineering. 123 (1997) 371-380.
Google Scholar
[7]
S.M. Hocaoglu, G. Insel, E. Ubay Cokgor, D. Orhon, Effect of sludge age on simultaneous nitrification and denitrification in membrane bioreactor, J. Bioresource Technology. 102 (2011) 6665-6672.
DOI: 10.1016/j.biortech.2011.03.096
Google Scholar
[8]
K. Bernat, I. Wojnowska-Baryła, Carbon source in aerobic denitrification, J. Biochemical Engineering Journal. 36 (2007) 116-122.
DOI: 10.1016/j.bej.2007.02.007
Google Scholar
[9]
M.T. Gutierrez-Wing, R.F. Malone, K.A. Rusch, Evaluation ofpolyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification, J. Aquacultural Engineering. 51 (2012) 36-43.
DOI: 10.1016/j.aquaeng.2012.07.002
Google Scholar
[10]
W. Wu, F. Yang, L. Yang, Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier, J. Bioresource Technology. 118 (2012) 136-140.
DOI: 10.1016/j.biortech.2012.04.066
Google Scholar
[11]
V. Laurin, N. Labbé, P. Juteau, S. Parent, R. Villemur, Long-term storage conditions for carriers with denitrifying biomass of the fluidized, methanol-fed denitrification reactor of the Montreal Biodome, and the impact on denitrifying activity and bacterial population, J. Water Research. 40 (2006).
DOI: 10.1016/j.watres.2006.03.002
Google Scholar
[12]
P. Elefsiniotis, D. Li, The effect of temperature and carbon source on denitrification using volatile fatty acids, J. Biochemical Engineering Journal. 28 (2006) 148-155.
DOI: 10.1016/j.bej.2005.10.004
Google Scholar
[13]
W.J.B. Saliling, P.W. Westerman, T.M. Losordo, Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations, J. Aquacultural Engineering. 37 (2007).
DOI: 10.1016/j.aquaeng.2007.06.003
Google Scholar
[14]
A. Boley, G. Haider, Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems, J. Aquacultural Engineering. 22 (2000) 75-85.
DOI: 10.1016/s0144-8609(00)00033-9
Google Scholar
[15]
Z. Shen, J. Wang, Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier, J. Bioresource Technology. 102 (2011) 8835-8838.
DOI: 10.1016/j.biortech.2011.06.090
Google Scholar
[16]
L. Chu, J. Wang, Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor, J. Chemical Engineering Journal. 170 (2011) 220-225.
DOI: 10.1016/j.cej.2011.03.058
Google Scholar
[17]
A.H.S.T. Khan, Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment, J. Appl Microbiol Biotechnol. 61 (2003) 103-109.
DOI: 10.1007/s00253-002-1198-y
Google Scholar
[18]
W. Müller, J. Wurmthaler, A. Heinemann, Biologische nitratelimination in kleinen wasserwerken (Biological nitrate elimination in small drinking water treatment plants), J. WAP. 5 (1992) 231-235.
Google Scholar
[19]
A. Lindstrom, A.C. Albertsson, M. Hakkarainen, Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly (butylene adipate) and poly (butylene succinate), J. Polymer Degradation and Stability. 83 (2004).
DOI: 10.1016/j.polymdegradstab.2003.07.001
Google Scholar
[20]
H. Wang, J. Ji, W. Zhang, Y. Zhang, J. Jiang, Z. Wu, S. Pu, P.K. Chu, Biocompatibility and bioactivity of plasma-treated biodegradable poly (butylene succinate), J. Acta Biomaterialia. 5 (2009) 279-287.
DOI: 10.1016/j.actbio.2008.07.017
Google Scholar
[21]
H. Pranamuda, Y. Tokiwa, H. Tanaka, Microbial degradation of an aliphatic polyester with a high melting point, poly (tetramethylene succinate), J. Applied and Environmental Microbiology. 61 (1995) 18-28.
DOI: 10.1128/aem.61.5.1828-1832.1995
Google Scholar
[22]
N. Ishii, Y. Inoue, T. Tagaya, H. Mitomo, D. Nagai, K. Kasuya, Isolation and characterization of poly (butylene succinate)-degrading fungi, J. Polymer Degradation and Stability. 93 (2008) 883-888.
DOI: 10.1016/j.polymdegradstab.2008.02.005
Google Scholar
[23]
W. Wu, L. Yang, J. Wang, Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor, J. Environmental Science and Pollution Research. 20 (2012) 333-339.
DOI: 10.1007/s11356-012-0926-9
Google Scholar
[24]
H. Zhou, J. Wang, X. Zhao, Denitrification using PBS as carbon source and biofilm supporter: effect of Ph, J. Environmental Science. 27 (2006) 290-293.
Google Scholar
[25]
H. Zhou, X. Zhao, J. Wang, Nitrate removal from groundwater using biodegradable polymers as carbon source and biofilm support, J. International Journal of Environment and Pollution. 38 (2009) 339-348.
DOI: 10.1504/ijep.2009.027234
Google Scholar
[26]
Z. Xu, L. Shao, H. Yin, H. Chu, Y. Yao, Biological denitrification using corncobs as a carbon source and biofilm carrier, J. Water Environment Research. 81 (2009) 242-247.
DOI: 10.2175/106143008x325683
Google Scholar
[27]
W.J. Liu, The characteristics of biological degradation polymer and disinfection byproducts, Higher Education Press, China, (2003).
Google Scholar
[28]
A. APHA, Standard methods for the examination of water and wastewater American Public Health Association, Inc., Washington. DC, (1998).
Google Scholar
[29]
L. Liu, J. Yu, L. Cheng, X. Yang, Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre, J. Polymer Degradation and Stability. 94 (2009) 90-94.
DOI: 10.1016/j.polymdegradstab.2008.10.013
Google Scholar
[30]
L. Zhou, H.P. Deng, Z. Z Liu, S.B. Sang. Catalytic Reduction of High-concentration Nitrate Nitrogen by Three Combined Electrodes, J. China Water and Wastewater. 25 (2009) 78-81.
Google Scholar
[31]
A. Lugauskas, Micromycetes as deterioration agents of polymeric materials, J. International biodeterioration & biodegradation. 52 (2003) 233-242.
DOI: 10.1016/s0964-8305(03)00110-0
Google Scholar
[32]
H.S. Kim, H.J. Kim, J.W. Lee, I.G. Choi, Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil, J. Polymer Degradation and Stability. 91 (2006) 1117-1127.
DOI: 10.1016/j.polymdegradstab.2005.07.002
Google Scholar
[33]
N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques-A review, J. Chemosphere. 73 (2008) 429-442.
DOI: 10.1016/j.chemosphere.2008.06.064
Google Scholar
[34]
J. Oh, J. Silverstein, Oxygen inhibition of activated sludge denitrification, J. Water Research. 33 (1999) 1925-(1937).
DOI: 10.1016/s0043-1354(98)00365-0
Google Scholar
[35]
A. Hiraishi, S. Khan, Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment, J. Applied microbiology and biotechnology. 61 (2003) 103-109.
DOI: 10.1007/s00253-002-1198-y
Google Scholar
[36]
X. Yang, S. Wang, L. Zhou, Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6, J. Bioresource Technology. 104 (2012) 65-72.
DOI: 10.1016/j.biortech.2011.10.026
Google Scholar
[37]
J. Mergaert, C. Anderson, A. Wouters, J. Swings, Microbial degradation of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in compost, J. Journal of Polymers and the Environment. 2 (1994) 177-183.
DOI: 10.1007/bf02067443
Google Scholar
[38]
G.Z. Luo, M.L. Dong, Q. Liu, P.W. Deng, H.X. Tan, Denitrification of saline water with poly (butylene succinate) as a carbon source and biofilm carrier, J. Environmental Pollution & Control. 35 (2013) 21-25 (in Chinese).
Google Scholar
[39]
P. Elefsiniotis, D. Wareham, M. Smith, Use of volatile fatty acids from an acid-phase digester for denitrification, J. Journal of Biotechnology. 114 (2004) 289-297.
DOI: 10.1016/j.jbiotec.2004.02.016
Google Scholar
[40]
P.O. Bickers, A.J. van Oostrom, Availability for denitrification of organic carbon in meat-processing wastestreams, J. Bioresource Technology. 73 (2000) 53-58.
DOI: 10.1016/s0960-8524(99)00129-7
Google Scholar
[41]
H.J. Hamlin, J.T. Michaels, C.M. Beaulaton, W.F. Graham, W. Dutt, P. Steinbach, T. M Losordo, K.K. Schrader, K.L. Main, Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture, J. Aquacultural Engineering. 38 (2008).
DOI: 10.1016/j.aquaeng.2007.11.003
Google Scholar
[42]
Y. Honda, Z. Osawa, Microbial denitrification of wastewater using biodegradable polycaprolactone, J. Polymer Degradation and Stability. 76 (2002) 321-327.
DOI: 10.1016/s0141-3910(02)00028-9
Google Scholar
[43]
M. Gomez, J. Gonzalez-Lopez, E. Hontoria-Garcıa, Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter, J. Journal of Hazardous Materials. 80 (2000) 69-80.
DOI: 10.1016/s0304-3894(00)00282-x
Google Scholar
[44]
O. Gibert, S. Pomierny, I. Rowe, R.M. Kalin, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB), J. Bioresource Technology. 99 (2008) 7587-7596.
DOI: 10.1016/j.biortech.2008.02.012
Google Scholar
[45]
S. Ge, Y. Peng, S. Wang, C. Lu, X. Cao, Y. Zhu, Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3—N, J. Bioresource Technology. 114 (2012) 137-143.
DOI: 10.1016/j.biortech.2012.03.016
Google Scholar
[46]
É. Fazzolari, B. Nicolardot, J.C. Germon, Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores, J. European journal of soil biology. 34 (1998).
DOI: 10.1016/s1164-5563(99)80006-5
Google Scholar
[47]
B.T. Wong, D.J. Lee, Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture, J. Bioresource Technology. 102 (2011) 6673-6679.
DOI: 10.1016/j.biortech.2011.03.097
Google Scholar