Effect of ZnO Nanoparticles on Medicago sativa at the Germination Stage

Article Preview

Abstract:

Phytotoxicity of manufactured nanoparticles in plants has received increasing attention. However, little information is available regarding the sensitive factor of Medicago sativa exposed to ZnO nanoparticles. The results showed ZnO nanoparticles had clearly effect on shoot length, shoot weight, shoot diameter, root/shoot ratio, root length, root weight, root diameter, root activity and mitotic index of Medicago sativa. Only root activity increased with the increasing concentration of ZnO nanoparticles. Principal component analysis showed root activity had a maximum absolute value in the first principal component, which indicated root activity was the key factor contributed to the variance. Therefore, root activity of Medicago sativa may serve as potential biomarker to indicate the pollution of ZnO nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

583-586

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Trenque, S. Mornet, E. Duguet and M. Gaudon: Inorg. Chem. Vol. 52 (2013), p.12811.

Google Scholar

[2] H. M. Xiong: Adv. Mater. Vol. 25 (2014), p.5329.

Google Scholar

[3] A. Gadisa, T. Hairfield, L. Alibabaei, C. L. Donley, E. T. Samulski and R. Lopez: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.8440.

DOI: 10.1021/am401798g

Google Scholar

[4] H. Ma, P. L. Williams and S. A. Diamond: Environ. Pollut. Vol. 172 (2013), p.76.

Google Scholar

[5] S. Manzo, M. L. Miglietta, G. Rametta, S. Buono and G. Di Francia: Sci. Total Environ. Vol. 445 (2013), p.371.

Google Scholar

[6] J. A. Hernandez-Viezcas, H. Castillo-Michel, J. C. Andrews, M. Cotte, C. Rico, J. R. Peralta-Videa, Y. Ge, J. H. Priester, P. A. Holden and J. L. Gardea-Torresdey: ACS nano Vol. 7 (2013), p.1415.

DOI: 10.1021/nn305196q

Google Scholar

[7] S. Cortés-Pérez, S. Rodríguez-Zaragoza and M. R. Mendoza-López.: Microb. Ecol. Vol. 67 (2014), p.430.

Google Scholar

[8] P. Martínez-Hidalgo, J. Olivares, A. Delgado, E. Bedmar and E. Martínez-Molina: Soil Biol. Biochem. Vol. 74 (2014), p.201.

Google Scholar

[9] G. de la Rosa, M. L. López-Moreno, D. de Haro, C. E. Botez, J. R. Peralta-Videa and J. L. Gardea-Torresdey: Pure Appl. Chem. Vol. 85 (2013), p.2161.

DOI: 10.1351/pac-con-12-09-05

Google Scholar

[10] M. L. López-Moreno, G. de la Rosa, J. Á. Hernández-Viezcas, H. Castillo-Michel, C. E. Botez, J. R. Peralta-Videa and J. L. Gardea-Torresdey: Environ. Sci. Technol. Vol. 44 (2010), p.7315.

DOI: 10.1021/es903891g

Google Scholar

[11] T. C. Kaspar and R. P. Ewing: Agron. J. Vol. 89 (1997), p.932.

Google Scholar

[12] T. Shaymurat, J. Gu, C. Xu, Z. Yang, Q. Zhao, Y. Liu and Y. Liu: Nanotoxicology Vol. 6 (2012), p.241.

Google Scholar

[13] W. M. Lee, J. I. Kwak and Y. J. An: Chemosphere Vol. 86 (2012), p.491.

Google Scholar

[14] J. Hou, G. N. Liu, W. Xue, W. J. Fu, B. C. Liang and X. H. Liu: Environ. Toxicol. Chem. Vol. 33 (2014), p.671.

Google Scholar