[1]
Z. Pawlak Rough sets, International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
Google Scholar
[2]
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System, 1990, 17: 191-209.
DOI: 10.1080/03081079008935107
Google Scholar
[3]
A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 2002, 126: 137-155.
DOI: 10.1016/s0165-0114(01)00032-x
Google Scholar
[4]
M. Kondo, On the structure of generalized rough sets, Information Sciences, 2006, 176: 589-600.
DOI: 10.1016/j.ins.2005.01.001
Google Scholar
[5]
H. G. Zhang, H. L. Liang, D. R. Liu, Two new operators in rough set theory with application to fuzzy sets, Information Science, 2004, 16: 147-165.
DOI: 10.1016/j.ins.2003.11.003
Google Scholar
[6]
L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, interval-valued fuzzy sets. IEEE Tran. Syst. Man. Cyber., 1973, 3(1): 28-44.
DOI: 10.1109/tsmc.1973.5408575
Google Scholar
[7]
B. Gorzafcczary, Interval-valued fuzzy controller based on verbal modal of object, Fuzzy Sets and Systems, 1988, 28: 45-53.
DOI: 10.1016/0165-0114(88)90115-7
Google Scholar
[8]
B. Turken, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 1986, 20: 191-210.
DOI: 10.1016/0165-0114(86)90077-1
Google Scholar
[9]
W. Zeng, Y. Shi, H. Li, Representation theorem of interval-valued fuzzy set. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2006, 14(3): 259-269.
DOI: 10.1142/s0218488506003996
Google Scholar
[10]
M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 1987, 21(1): 1-17.
DOI: 10.1016/0165-0114(87)90148-5
Google Scholar
[11]
X. Yang, T. Y. Lin, J. Yang, Y. Li and D. Yu, combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications, 2009, 58(3): 521-527.
DOI: 10.1016/j.camwa.2009.04.019
Google Scholar
[12]
S. Alkhazaleh, A. R. Salleh, Generalised interval-valued fuzzy soft set, 2012, doi: 10. 1155/2012/870504.
DOI: 10.1155/2012/870504
Google Scholar
[13]
Z. Gong, B. Sun, D. Chen. Rough set theory for the interval-valued fuzzy information systems. Information Sciences, 2008, 178: 1968-(1985).
DOI: 10.1016/j.ins.2007.12.005
Google Scholar
[14]
Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006, 35: 417-433.
DOI: 10.1080/03081070600574353
Google Scholar