Rule Extraction Based on Interval-Valued Rough Fuzzy Sets

Article Preview

Abstract:

A model of interval-valued rough fuzzy set combining interval-valued fuzzy set and rough set is investigated in this paper. Firstly, considering the deficiency of general sorting method between any interval-valued fuzzy numbers, an improved sorting method and a pair of new approximation operators about minimum and maximum are presented. Based on the improved operators, a model of interval-valued rough fuzzy set is established. At last, by using the modified model of interval-valued rough fuzzy set, a method of knowledge discovery in interval-valued fuzzy information systems is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

668-673

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Pawlak Rough sets, International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.

Google Scholar

[2] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System, 1990, 17: 191-209.

DOI: 10.1080/03081079008935107

Google Scholar

[3] A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 2002, 126: 137-155.

DOI: 10.1016/s0165-0114(01)00032-x

Google Scholar

[4] M. Kondo, On the structure of generalized rough sets, Information Sciences, 2006, 176: 589-600.

DOI: 10.1016/j.ins.2005.01.001

Google Scholar

[5] H. G. Zhang, H. L. Liang, D. R. Liu, Two new operators in rough set theory with application to fuzzy sets, Information Science, 2004, 16: 147-165.

DOI: 10.1016/j.ins.2003.11.003

Google Scholar

[6] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, interval-valued fuzzy sets. IEEE Tran. Syst. Man. Cyber., 1973, 3(1): 28-44.

DOI: 10.1109/tsmc.1973.5408575

Google Scholar

[7] B. Gorzafcczary, Interval-valued fuzzy controller based on verbal modal of object, Fuzzy Sets and Systems, 1988, 28: 45-53.

DOI: 10.1016/0165-0114(88)90115-7

Google Scholar

[8] B. Turken, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 1986, 20: 191-210.

DOI: 10.1016/0165-0114(86)90077-1

Google Scholar

[9] W. Zeng, Y. Shi, H. Li, Representation theorem of interval-valued fuzzy set. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2006, 14(3): 259-269.

DOI: 10.1142/s0218488506003996

Google Scholar

[10] M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 1987, 21(1): 1-17.

DOI: 10.1016/0165-0114(87)90148-5

Google Scholar

[11] X. Yang, T. Y. Lin, J. Yang, Y. Li and D. Yu, combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications, 2009, 58(3): 521-527.

DOI: 10.1016/j.camwa.2009.04.019

Google Scholar

[12] S. Alkhazaleh, A. R. Salleh, Generalised interval-valued fuzzy soft set, 2012, doi: 10. 1155/2012/870504.

DOI: 10.1155/2012/870504

Google Scholar

[13] Z. Gong, B. Sun, D. Chen. Rough set theory for the interval-valued fuzzy information systems. Information Sciences, 2008, 178: 1968-(1985).

DOI: 10.1016/j.ins.2007.12.005

Google Scholar

[14] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006, 35: 417-433.

DOI: 10.1080/03081070600574353

Google Scholar