[1]
Badriev I.B., Shagidullin R.R. Analysis of one-dimensional soft shell static state equations and of algorithm of their solving / Russian Mathematics. (1992). V. 36, No. 1. P. 6–14.
Google Scholar
[2]
. Sultanov, L.U., Davydov, R.L. Mathematical modeling of large elastic-plastic deformations/ Applied Mathematical Sciences. (2014). V. 8 . Issue 57-60. - P. 2991-2996.
DOI: 10.12988/ams.2014.44272
Google Scholar
[3]
Badriev I.B., Banderov V.V., Zadvornov O.A. On the equilibrium problem of a soft network shell in the presence of several point loads / Applied Mechanics and Materials. -(2013). V 392. P. 188-190.
DOI: 10.4028/www.scientific.net/amm.392.188
Google Scholar
[4]
Badriev I.B., Banderov V.V., Zadvornov O.A. Existence of solution of the equilibrium soft network shell problem in the presence of a point load / Proceedings of Kazan University. Physics and Mathematics Series. – 2010). V. 152, Is. 1. P. 93–102. (in Russian).
DOI: 10.4028/www.scientific.net/amm.392.188
Google Scholar
[5]
Badriev, I.B., Banderov, V.V., Zadvornov, O.A. On the solving of equilibrium problem for the soft network shell with a load concentrated at the point/ PNRPU Mechanics Bulletin. (2013). V3. P. 17-35.
DOI: 10.4028/www.scientific.net/amm.392.188
Google Scholar
[6]
Lions J. -L. Quelque problèmes méthodes de résolution des problèmes aux limites nonlinéaires. Paris: Dunod, (1969). 554 p.
Google Scholar
[7]
Ekeland I., Temam R. Convex Analysis and Variational Problems. Amsterdam: North-Holland, (1976). 402 p.
Google Scholar
[8]
Badriev I.B., Zadvornov O.A. Investigation of solvability of an axisymmetric problem of the equilibrium position of a soft rotation shell / Russian Mathematics. (2005). V. 49, No. 1. P. 21-26.
Google Scholar