Dispersion Management and Nonlinearity Enhancement in a Hybrid Nanofiber with a High Index, Cross-Slot-Structure Nanocore

Article Preview

Abstract:

A highly nonlinear, dispersion flattened hybrid nanofiber with a silicon/silica cross-slot-structure nanocore is proposed and analyzed, which is insensitive to polarization for implementing quasi-TE and quasi-TM fundamental modes transmission due to the cross slot effect. Simulation results show that fundamental mode with ultra-small mode effective areas and high nonlinearity at TE and TM polarizations, which are confined in the narrow cross slot by four silicon ribs, can be achieved via this cross-slot-structure core. Moreover, the cladding of four large-air-holes contributes to the tailoring of the group velocity dispersion (GVD) and further enhancment of the nonlinearity. Our results indicate that ultra-small Aeff of 0.098μm2 and flat anomalous GVD with less than 13.5 ps.km-1.nm-1 dispersion ripple at C-band are realizable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-21

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xian FengCorresponding author contact information, E-mail the corresponding author, Francesco Poletti, Angela Camerlingo, Francesca Parmigiani, Periklis Petropoulos, Peter Horak, Giorgio M. Ponzo, Marco Petrovich, Jindan Shi, Wei H. Loh, David J. Richardson, Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths, Optical Fiber Technology, 16(6), 378–391(2010).

DOI: 10.1016/j.yofte.2010.09.014

Google Scholar

[2] G. P. Agrawal, Nonlinear Fiber Optics, Third edition, Academic Press, San Diego (2001).

Google Scholar

[3] Leong J. Y. Y, Petropoulos P, Asimakis S, et al, a Lead Silicate Holey Fiber with1860 W-1km-1 at 1550 nm. 2005 Conference on Optical Fiber Communication [C]. Washington DC: Optical Soc. America, 2005: PDP22.

DOI: 10.1109/ofc.2005.193200

Google Scholar

[4] Magi E C, Fu L B, Nguyen H C, Lamont M R, Yeom D T, Eggleton B J, Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers , Opt. Express 15 10324-9( 2007).

DOI: 10.1364/oe.15.010324

Google Scholar

[5] Almeida V R, Xu Q, Barrios C A, Lipson M, Guiding and confining light in void nanostructure, Opt. Letters 29 1209-11(2004).

DOI: 10.1364/ol.29.001209

Google Scholar

[6] Saitoh K, Kakihara K, Varsheney S and Koshiba M, Nonlinearity enhancement and dispersion management in bismuth microstructured fibers with a filled slot defect CLEO' 2008 Paper JTuA82.

DOI: 10.1109/cleo.2008.4552232

Google Scholar

[7] Lin An, Zheng Zheng, Yusheng Bian, Zheng Li, Sen Shi, Tao Zhou and Jiangtao Cheng, Dispersion-Modified, Highly-Nonlinear Holey Fibre with a High-Index, Slot-Structure Core, Journal of Optics 12, 115502, (2010).

DOI: 10.1088/2040-8978/12/11/115502

Google Scholar

[8] A. Khanna, A. Säynätjoki, A. Tervonen, S. Honkanen. Non-birefringent cross-slot waveguide, CLEO Europe 2009, Munich, Germany, 14–19 June 2009, paper CK.P. 10.

DOI: 10.1109/cleoe-eqec.2009.5191969

Google Scholar

[9] http: /www. comsol. com.

Google Scholar

[10] http: /refractiveindex. info/?group=CRYSTALS&material=SiO2,2013-08-30.

Google Scholar

[11] Govind P. Agrawal, Nonlinear Fiber Optics, Third Edition (Optics and Photonics) Academic Press; 3 edition (2001).

Google Scholar

[12] Saitoh K and Koshiba M, Single-polarization single-mode photonic crystal fibers IEEE Photon. Technol. Lett, 15, 1384-6(2003).

DOI: 10.1109/lpt.2003.818215

Google Scholar

[13] J. V. Galan, P. Sanchis, J. Garcia, J. Blasco, A. Martinez, and J. Martí, Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes, Appl. Opt. 48, 2693–2696 (2009).

DOI: 10.1364/ao.48.002693

Google Scholar

[14] Yusheng Bian, Zheng Zheng, Xin Zhao, Yalin Su, Lei Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou, T-shaped dielectric slot waveguides for efficient control of birefringence and polarization independent directional coupling, Optics Communications, 285, 5118-5121 (2012).

DOI: 10.1016/j.optcom.2012.07.104

Google Scholar