[1]
I. Cielecka, J. Jedrysiak, A Non-asymptotic Model of Dynamics of Honeycomb Lattice-type Plates. Journal of Sound and Vibration. Vol. 296 (2006), pp.130-149.
DOI: 10.1016/j.jsv.2006.02.008
Google Scholar
[2]
J. Sun, W. Zhang, L. Chen and M. Yao, Nonlinear Dynamics of the Honeycomb Sandwich Plates. Journal of Dynamics and Control, Vol. 6 (2008), pp.150-155.
Google Scholar
[3]
Y. Li, D. Zhu, Free Flexural Vibration Analysis of Symmetric Rectangular Honeycomb Panels Using the Improved Reddy's Third-order Plate Theory. Composite Structures, Vol. 88 (2009), pp.33-39.
DOI: 10.1016/j.compstruct.2008.03.033
Google Scholar
[4]
V. Brulayenko, T. Sadowski, Influence of Skin/Core Deboning on Free Vibration Behavior of Foam and Honeycomb Cored Sandwich Plates. International Journal of Non-Linear Mechanics, Vol. 45 (2010), pp.959-963.
DOI: 10.1016/j.ijnonlinmec.2009.07.002
Google Scholar
[5]
Y. Li, D. Zhu, Geometrically Nonlinear Forced Vibrations of the Symmetric Honeycomb Sandwich Panels Affected by the Water. Composite Structures, Vol. 93 (2011), pp.880-888.
DOI: 10.1016/j.compstruct.2010.07.005
Google Scholar
[6]
Y. Zhang, Y. Yan, Y. Li and F. Li, Nonlinear Dynamics Analysis of Aluminum Honeycomb Sandwich Plate with Completed Clamped Supported. Acta Metallurgica Sinica, Vol. 48 (2012), pp.995-1004.
DOI: 10.3724/sp.j.1037.2012.00235
Google Scholar
[7]
X. Li, J. Li and B. He. Hypernormal Form at Cubic of Honeycomb Sandwich Plate Dynamics Model. Applied Mechanics and Materials, Vol. 437 (2013), pp.81-84.
DOI: 10.4028/www.scientific.net/amm.437.81
Google Scholar
[8]
J. Li, Y. Tian, W. Zhang and S. Miao. Bifurcatio of Multiple Limit Cycles for a Rotor-Active Magnetic Bearings System with Time-varying Stiffness. International Journal of Bifurcation and Chaos, Vol. 18 (2008), pp.755-778.
DOI: 10.1142/s021812740802063x
Google Scholar