[1]
Chen Shao-ping, Dai Guang-fa, and Rao Wen-gui. ICI mitigation and diversity gain for OFDM systems in time-varying multipath fading channels[J]. European Transactions on Telecommunications, 2011, 22(2): 61-67.
DOI: 10.1002/ett.1458
Google Scholar
[2]
Ye X, Zhu W P, Zhang A, et al. Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed l 0-norm-regularized least squares compressed sensing[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-13.
DOI: 10.1186/1687-1499-2013-282
Google Scholar
[3]
Liu G, Zeng L, Li H, et al. Adaptive complex interpolator for channel estimation in pilot-aided OFDM system[J]. Communications and Networks, Journal of , 2013, 15(5): 496-503.
DOI: 10.1109/jcn.2013.000089
Google Scholar
[4]
Raghavan V,Hariharan G,Sayeed A M. Capacity of sparse multipath channels in the ultra-wideband regime [J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(3): 357-371.
DOI: 10.1109/jstsp.2007.906666
Google Scholar
[5]
Candès E J,Tao T. Near optimal signal recovery from random projection:universal encoding strategies[J]. IEEE Transactions on Information Theory,2006,52(12):5406-5425.
DOI: 10.1109/tit.2006.885507
Google Scholar
[6]
Baraniuk R . Compressive sensing [J]. IEEE Signal Processing Magazine,2007,24(4):118-121.
Google Scholar
[7]
Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory,2006,52(4): 1289-1306.
Google Scholar
[8]
Giryes R, Nam S, Elad M, et al. Greedy-like algorithms for the cosparse analysis model[J]. Linear Algebra and its Applications, 2014, 441: 22-60.
DOI: 10.1016/j.laa.2013.03.004
Google Scholar
[9]
TROPP J A,GILBERTA C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit [J]. IEEE Transaction on Information Theory,2007, 53(12):4655-4666.
DOI: 10.1109/tit.2007.909108
Google Scholar
[10]
Wei Dai,Milenkovic,O. Subspace Pursuit for Compressive Sensing Signal Reconstruction [J]. IEEE Transactions on Information Theory, 2009, 55(5):2230 - 2249.
DOI: 10.1109/tit.2009.2016006
Google Scholar
[11]
Sun X, Jia Y, Hou M, et al. 60 GHz ultra-wideband channel estimation based on a cluster sparsity compressed sensing[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-9.
DOI: 10.1186/1687-1499-2013-114
Google Scholar
[12]
Liu Kai-hua,Chen Wei-kai,and Ma Yong-tao. A Compressive Sensing Method for Estimating Doubly-Selective Sparse Channels in OFDM Systems[J]. Journal of Tianjin University, 2012, 45(6): 1121-1126.
Google Scholar
[13]
Taubock G, Hlawatsch F, Eiwen D, et al. Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing[J]. Selected Topics in Signal Processing, IEEE Journal of, 2010, 4(2): 255-271.
DOI: 10.1109/jstsp.2010.2042410
Google Scholar
[14]
Daniel Eiwena, Georg Taub¨ockb, Franz Hlawatschb, and Hans Georg Feichtingera. Group Spa rsity Methods for compressive channel estimation in doubly dispersive multicarrier systems, 2010 I EEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
DOI: 10.1109/spawc.2010.5670986
Google Scholar
[15]
Flandrin P. Time-frequency/time-scale analysis[M]. Academic Press, (1998).
Google Scholar
[16]
Y C Eldar, P Kuppinger, H B lcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery [J]. IEEE Trans on Signal Processing, 2010, 58(6): 3042-3054.
DOI: 10.1109/tsp.2010.2044837
Google Scholar