Typical Solid State and Wet Chemistry Methods to Prepare Nano-Sized Nickel Ferrite Particles

Article Preview

Abstract:

Different ways to prepare nanosized nickel ferrite particles have been developed. Typical solid state reaction routes including high temperature sintering, mechanical alloying, self-propagating high temperature synthesis and wet chemistry methods including co-precipitation, sol-gel, hydrothermal synthesis are briefly reviewed and compared by focusing on the particle size control.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-10

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Singh, S.K. Gupta, A.K. Singh: J. Magn. Magn. Mater. Vol. 324 (2012), p.999.

Google Scholar

[2] Y.L. Kuo, W.M. Hsu, P.C. Chiu: Ceram. Int. Vol. 39 (2013), p.69.

Google Scholar

[3] A. Abbaspour, E. Mirahmadi: Fuel Vol. 104 (2013), p.575.

Google Scholar

[4] R. Benrabaa, A. Löfberg, A. Rubbens, et al: Catal. Today Vol. 39 (2013), p.69.

Google Scholar

[5] Q.R. Lin: Ferrite Technology (Shanghai Technology Press, Shanghai 1987).

Google Scholar

[6] D. Elwell, R. Parker and C.J. Tinsley: Solid State Commun. Vol. 4 (1996), p.69.

Google Scholar

[7] A. Azizi, S.K. Sadrnezhaad: Ceram. Int. Vol. 7 (2010), p.2241.

Google Scholar

[8] C.H. Peng, C.C. Hwang, C.K. Hong, et al: Mater. Sci. Eng. B Vol. 107 (2004), p.295.

Google Scholar

[9] K.Q. Wang, X.D. He, Y. Sun, et al: Rare Metal Mat. Eng. Vol. 38 (2009), p.130 (in Chinese).

Google Scholar

[10] M.G. Sa, J.Q. Zhao, Z.H. Zhao, et al: Sci. Tech. Inno. Herald Vol. 23 (2009), p.252(in Chinese).

Google Scholar

[11] G.F. Tian, L. Wang, H.B. Wang, et al: J. Magn. Mater. Devic. Vol. 4 (2005), p.20(in Chinese).

Google Scholar

[12] D.L. Fang, C.H. Zheng, W.C. Zhu, et al: Mater. Sci. Eng. Vol. 19 (2001), p.86(in Chinese).

Google Scholar

[13] Y.C. Li, T. Zhou, B.Y. Huan: Mater. Sci. Eng. Powder Metall. Vol. 7 (2002), p.139 (in Chinese).

Google Scholar

[14] H.W. Liu, D.G. Tang, X.H. Li: Inorganic Chemistry and Chemical Engineering Symposium in Central and western regions. 2010 (in Chinese).

Google Scholar

[15] K. Maaz, S. Karim, A. Mumtaz, et al: J. Magn. Magn. Mater. Vol. 321 (2009), p.1838.

Google Scholar

[16] M.G. Naseri, E.B. Saion, H.A. Ahangar, et al: Powder Technol. Vol. 212 (2011), p.80.

Google Scholar

[17] D.H. Chen, X.R. He: Mater. Res. Bull. Vol. 36 (2001), p.1369.

Google Scholar

[18] D.T. T. Nguyet, D.T.T. Nguyeta, N. P. Duonga, et al: J. Alloys Compd. Vol. 509 (2011), p.6621.

Google Scholar

[19] K. Yan, X. Wu, X. An, et al: J. Alloys Compd. Vol. 552 (2013), p.405.

Google Scholar

[20] M. Srivastava, S. Chaubey, A.K. Ojha: Mater. Chem. Phys. Vol. 118 (2009), p.174.

Google Scholar

[21] K. M. Reddy, L. Satyanarayana, V.S. Manorama, et al: Mater. Res. Bull. Vol. 39 (2004), p.1491.

Google Scholar

[22] J.Z. Huo, M.Z. We: Mater. Lett. Vol. 63 (2009), p.1183.

Google Scholar

[23] D.H. Chen, D.R. Chen, X.L. Jiao, et al: Powder Technol. Vol. 133 (2003), p.247.

Google Scholar

[24] M. M. Bucko, K. Haberko: J. Eur. Ceram. S˚C. Vol. 27 (2007), p.723.

Google Scholar

[25] L. Wang, J.W. Ren, Y.G. Wang, et al: J. Alloys Compd. Vol. 490 (2010), p.656.

Google Scholar

[26] J.L. Zhan, Q.Z. Zhen, J.H. Wang: J. ShanXi Univ. (Nat. Sci. Ed. ) Vol. 35(2012), p.104(in Chinese).

Google Scholar