Heteropolyanion Substituted Layered Double Hydroxide as Recoverable Catalyst for the Oxidative Desulfurization of Simulated Fuel Oil and Diesel

Article Preview

Abstract:

Heteropolyanion substituted layered double hydroxide were synthesized and used as catalysts for oxidative desulfurization in simulated fuel oil (dibenzothiophene (DBT) in n-octane) or diesel. The catalysts are recoverable and operate with high conversion efficiency under mild conditions of atmospheric pressure and 60 °C in a biphasic system using peroxide hydrogen as oxidant and acetonitrile as extractant. Zn9Al3(OH)24PW12O40(ZnAlPW), Zn9Al3(OH)24PMo12O40 (ZnAlPMo) and Zn12Al4(OH)32SiW12O40(ZnAlSiW) were identified as effective catalysts for the oxidative removal of DBT from simulated fuel oil. The order of decreasing catalytic activity is ZnAlPMo > ZnAlPW > ZnAlSiW. The results show that the best catalysts, ZnAlPMo, attained to a DBT conversion of nearly 100%. All the catalysts can be readily recycled by filtration after use. The recoverable ZnAlPMo retains nearly the same catalytic activity as the fresh. ZnAlPMo was found to exhibit an ideal catalytic activity in oxidative desulfurization of diesel with a total sulfur removal rate of 91.8%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

613-618

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Cowan, M. Høglin, H. Reinik, J. Jsebaert and D. Chadwick: Catal. Today Vol. 45 (1998), p.381.

Google Scholar

[2] M.M. Hossain: Chem. Eng. J. Vol. 123 (2006), p.123.

Google Scholar

[3] A. M. Venezia, R. Murania, G. Pantaleo, V.L. Parola, S. Scirè and G. Deganello: Appl. Catal. A: Gen. Vol. 353 (2009), p.296.

Google Scholar

[4] V.G. Balovino-Medrano, P. Eloy, E.M. Gaigeaux, S.A. Giraldo and A. Centeno: J. Catal. Vol. 267 (2009), p.129.

Google Scholar

[5] T. Furuya, S. Yamagami, K. Yazu, I. Saito, K. Miki: Fluid Phase Equilib. Vol. 228-229 (2005), p.541.

Google Scholar

[6] T. Furuya, T. Ishikawa, T. Funazukuri, Y. Takebayashi, S. Yoda, K. Otake and T. Saito: Fluid Phase Equilib. Vol. 257 (2007), p.147.

DOI: 10.1016/j.fluid.2007.01.024

Google Scholar

[7] D. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishihara and T. Kabe: Appl. Catal. A: Gen. Vol. 253 (2003), p.91.

Google Scholar

[8] K.J. Stanger and R.J. Angelici: Energy Fuels Vol. 20 (2006), p.1757.

Google Scholar

[9] J. Gao, S. Wang, Z. Jiang, H. Lu, Y. Yang, F. Jing and C. Li: J. Mol. Catal. A: Chem. Vol. 258 (2006), p.261.

Google Scholar

[10] R. Wang, F.L. Yu, G.F. Zhang and H. Zhao: Catal. Today Vol. 150 (2010), p.37.

Google Scholar

[11] W. Li, J. Xing, Y. Li, X. Xiong, X. Li and H. Liu: Catal. Commun. Vol. 9 (2008), p.376.

Google Scholar

[12] F. Zannikos, E. Lois and S. Stournas: Fuel Proc. Technol. Vol. 42 (1995), p.35.

Google Scholar

[13] M. Te, C. Fairbridge and Z. Ring: Appl. Catal. A: Gen. Vol. 219 (2001), p.267.

Google Scholar

[14] L. Hu, Z. Zhang, S. Xie, S. Liu and L. Xu: Catal. Commun. Vol. 10 (2009), p.900.

Google Scholar

[15] K. Yazu, Y. Yamamoto, T. Furuya, K. Miki and K. Ukegawa: Energ. Fuel Vol. 15 (2001), p.1535.

Google Scholar

[16] J. Guo, Q.Z. Jiao, J.P. Shen, D.Z. Jiang, G.H. Yang and E.Z. Min: Catal. Lett. Vol. 40 (1996), p.43.

Google Scholar

[17] C.L. Hill and R.B. Brown: J. Am. Chem. Soc. Vol. 108 (1986), p.536.

Google Scholar

[18] E. Gardner, S.K. Yun, T. Kwon and T.J. Pinnavaia: Appl. Clay Sci. Vol. 13 (1998), p.479.

Google Scholar

[19] Y.H. Guo, D.F. Li, C.W. Hu, E.B. Wang, Y.C. Zou, H. Ding and S.H. Feng: Micropor. Mesopor. Mat. Vol. 56 (2002), p.153.

Google Scholar

[20] P. Moreau, V. Hulea, S. Gomez, D. Brunel and F. D. Renzo: Appl. Catal. A: Gen. Vol. 155 (1997), p.155.

Google Scholar

[21] D. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishihara and T. Kabe: Appl. Catal. A: Gen. Vol. 155 (2003), p.91.

Google Scholar

[22] R.A. Sheldon: J. Mol. Catal. Vol. 7 (1980), p.107.

Google Scholar