Cost Analysis of Laccase Production with Rice Straws as the Sole Carbon and Energy Source

Article Preview

Abstract:

In order to reduce the production cost, NaOH pretreated rice straw was used as the sole carbon and energy source to produce laccase. The production cost of laccase under submerged fermentation considering the cost of medium culture, equipment and operation. The results showed that the operation cost represented the highest contribution to the total cost, while, the cost of the culture medium was significantly low, representing only 6.68% of the total costs. Showing that as rice straw is cheap and easily available and will cause environmental pollution when mishandled, so it is financially and environmentally very attractive to use it for the production of enzymes for biotechnological use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1680-1684

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Frasconi, G. Favero, H. Boer, A. Koivula, F. Mazzei. BBA - Proteins Proteom Vol. 1804(2010), pp.899-908.

DOI: 10.1016/j.bbapap.2009.12.018

Google Scholar

[2] M. Fernández-Fernández, M.Á. Sanromán, D. Moldes. Biotechnol Adv. Vol. 31(2013)pp.1808-1825.

Google Scholar

[3] F. O. Johann, L.T.H. José, R.C. Susana. J. Environ. Manage. Vol. 2(2011), pp.2907-2912.

Google Scholar

[4] J.F. Li, Y.Z. Hong, Y.Z. Xiao, Y.H. Xu, W. Fang. World J. Microb. Biot. Vol. 23(2007), pp.741-745.

Google Scholar

[5] P. Binod, R. Sindhu, R.R. Singhania, S. Vikram, L. Devi, S. Nakanakshmi,N. Kurien, R. K. Sukumaran, A. Pandey. Bioresour. Technol. Vol. 101(2010), pp.4767-4774.

DOI: 10.1016/j.biortech.2009.10.079

Google Scholar

[6] A. Singh, S. Tuteja, N. Singh. N.R. Bishnoi. Bioresour. Technol. Vol. 102 (2011), p.1773–1782.

Google Scholar

[7] J.F. Alberts, W.C.A. Gelderblom, A. Botha, V.W. Hanzyl. Inter. J. Food Microb. Vol. 135(2009), p.47–52.

Google Scholar

[8] H.D. Graham. J. Agri. Food Chem. Vol. 40(1992), pp.801-805.

Google Scholar

[9] X.C. Jin, Y. Ning. J. Hazard. Mater. Vol. 262(2013), pp.870-877.

Google Scholar

[10] A. Pınar, G. Serap Ş. Mesut,Ü. Arzu, K. Nazif, Y. Alp. Fuel Process. Technol. Vol. 92(2011) , p.71–76.

Google Scholar

[11] V. Vivekanand, P. Dwivedi N. Pareek, R. P. Singh. Appll. Biochem. Biotechnol. Vol. 165(2011), p.204–220.

Google Scholar

[12] X. Zeng, Y. Cai, X. Liao, X. Zeng, W. Li, D. Zhang.J. Hazard. Mater. Vol. 187(2011), p.517–525.

Google Scholar

[13] V. Ruben, D. Brecht, M. Kris, R. John, B. Wout. Plant Physiol. Vol. 153(2010), pp.895-905.

Google Scholar

[14] P. Zucca, A. Rescigno, A. Olianas, S. Maccioni, F.A. Sollai, E. Sanjust. J. Mol. Catal. B: Enzym. Vol. 68(2011), pp.216-222.

Google Scholar

[15] V. Elisashvili, E. Kachlishvili, T. Khardziani, S.N. Agathos. J. Indus. Microbiol. Biotechnol. Vol. 37(2010), pp.1091-1096.

Google Scholar

[16] V.L. Papinutti, F. Forchiassin. J. Food Eng. Vol. 81(2007), p.54–59.

Google Scholar