[1]
Akaranta, O., & Oku, G. E., 1999. Erratum to: Some properties of cassava mesocarp carbohydrates-low density polyethylene blends,. Carbohydrate Polymers, 34, 403–405.
DOI: 10.1016/s0144-8617(97)00108-2
Google Scholar
[2]
Arvanitoyannis, I., Biliaderis, C. G., Ogawa, H., & Kawasaki, N., 1998. Biodegradable films made from low density polyethylene (LDPE), rice starch and potato starch for food packaging application,: Part I. Carbohydrate Polymer, 36, 89–104.
DOI: 10.1016/s0144-8617(98)00016-2
Google Scholar
[3]
Agamuthu, P., & Fauziah, S. H., 2006. MSW disposal in Malaysia: landfill management,. In Proceedings of the 2nd expert meeting on solid waste management in Asia and the Pacific islands, Kitayushu (pp.23-24).
Google Scholar
[4]
Agamuthu, P., Khidzir, K. M., & Hamid, F. S., 2009. Drivers of sustainable waste management in Asia,. Waste Management & Research, 27(7), 625-633.
DOI: 10.1177/0734242x09103191
Google Scholar
[5]
Bledzki AK, Gassan J., 1999. Progr Polym Sci 24: 221.
Google Scholar
[6]
Byrom D, 1987. Polymer synthesis by microorganisms: Technology and economics,. Trends in Biotechnology; 5: 246-250.
DOI: 10.1016/0167-7799(87)90100-4
Google Scholar
[7]
Chen GQ., 2009. A polyhydroxyalkanoates based bio- and materials industry,. Chem Soc Rev. 38: 2434–2446.
Google Scholar
[8]
Chee J.Y., Yoga S., Lau N., Ling S., Raeid M., Abed M., Sudesh K., 2010. Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics,. Current research, technology and education topics in applied microbiology and microbial biotechnology. A Mendez -vilas edition, Formatex.
Google Scholar
[9]
Cazacu, G., Pascu, M.C., Profire, L., Vasile, C., 2002. Environmental friendly polymer materials. Polyolefins-lignin based materials,. Environ. Prot. Ecol. 3(1), 242–248.
Google Scholar
[10]
Cazacu, G., Pascu, M.C., Profire, L., Kowarski, A.I., Mihăes, M., Vasile, C., 2004. Lignin role in a complex polyolefin blend,. Ind. Crops Prod. 20, 261–273.
DOI: 10.1016/j.indcrop.2004.04.030
Google Scholar
[11]
Cao, Y., Shibata, S., & Fukumoto, I., 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites part A,: Applied science and Manufacturing, 37(3), 423-429.
DOI: 10.1016/j.compositesa.2005.05.045
Google Scholar
[12]
Chakraborty A, Sain M, Kortschot M, Cutler S., 2007. J Biobased Mat Bioenergy 1: 71.
Google Scholar
[13]
Debeaufort F, Quezada-Gallo JA, Voilley A, 1998. Edible films and coatings: tomorrow's packagings: a review,. Crit Rev Food Sci Nutr 38(4): 299–313.
DOI: 10.1080/10408699891274219
Google Scholar
[14]
Drumright, R. E., P. R. Gruber & D. E. Henton, 2000. Polylactic acid technology,. Advanced Materials 12, 1841-1846.
DOI: 10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e
Google Scholar
[15]
Erlandsson, B., Karlsson, S., & Albertsson, A. C., 1997. The mode of action of corn starch and a prooxidant system in LDPE: Influence of thermooxidation and UV irradiation on the molecular weight changes,. Polymer Degradation and Stability, 55, 237–245.
DOI: 10.1016/s0141-3910(96)00139-5
Google Scholar
[16]
Fan, D., Chang, P. R., Lin, N., Yu, J., & Huang, J., 2011. Structure and properties of alkaline lignin-filled poly (butylene succinate) plastics,. Iranian Polymer Journal, 20(1), 3-14.
Google Scholar
[17]
Fleck-Arnold JE, 2000. Plastic mulch films additives and their effects,. Proc Natl Agr Plast Congr 29: 310 – 314.
Google Scholar
[18]
Grothe E, Moo-Young M, Chisti Y., 1999. Fermentation optimization for the production of poly(beta-hydroxybutyric acid) microbial thermoplastic,. Enzyme and Microbial Technology 25: 132-141.
DOI: 10.1016/s0141-0229(99)00023-x
Google Scholar
[19]
Guilbert S, Gontard N, Gorris LGM, 1996. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings,. Lebensm Wiss U Technol 29: 10–17.
DOI: 10.1006/fstl.1996.0002
Google Scholar
[20]
Gupta, B., N. Revagade & J. Hilborn, 2007. Poly(lactic acid)fiber: An overview,. Progress in Polymer Science 32, 455-482.
DOI: 10.1016/j.progpolymsci.2007.01.005
Google Scholar
[21]
Glasser, W. G., 1981. Potential role of lignin in tomorrow's wood utilization technologies. For. Prod. J.; (United States), 31(3).
Google Scholar
[22]
Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G, 2001. Developing biodegradable mulch films from starch-based polymers,. Starch 53: 362 –367.
DOI: 10.1002/1521-379x(200108)53:8<362::aid-star362>3.0.co;2-j
Google Scholar
[23]
He WN, Zhang ZM, Hu P, Chen GQ., 1999. "Microbial synthesis and characterization of polyhydroxyalkanoates.
Google Scholar
[24]
by strain DG17 from glucose". Acta Polym Sin 6: 709–714.
Google Scholar
[25]
Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M., 2008. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers,. Composites Science and Technology, 68(2), 424-432.
DOI: 10.1016/j.compscitech.2007.06.022
Google Scholar
[26]
Inoue, K., Serizawa, S., Yamashiro, M., & Iji, M., 2007. Highly Functional Bioplastics (PLA compounds) Used for Electronic Products,. In Polymers and Adhesives in Microelectronics and Photonics, 2007. Polytronic 2007. 6th International Conference on (pp.73-76.
DOI: 10.1109/polytr.2007.4339141
Google Scholar
[27]
John MJ, Anandjiwala RD, Pothan LA, Thomas S., 2007. Compos Interface 14: 733.
Google Scholar
[28]
Kamariah N, 1998. Dealing with a load of rubbish. J Green Wave 2: 50–52.
Google Scholar
[29]
Kaihara, S., Y. Osanai, K. Nishikawa, K. Toshima, Y. Doi & S. Matsumura, 2005. Enzymatic transformation of bacterialpolyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling,. Macromolecular Bioscience 5, 644-652.
DOI: 10.1002/mabi.200500030
Google Scholar
[30]
Keshavarz, T. & I. Roy, 2010. Polyhydroxyalkanoates: bioplastics with a green agenda,. Current Opinion in Microbiology 13, 321-326.
DOI: 10.1016/j.mib.2010.02.006
Google Scholar
[31]
Khabbaz, F., Albertsson, A. C., & Karlsson, S., 1998. Trapping of volatile low molecular weight photoproducts in inert and enhanced degradable LDPE,. Polymer Degradation and Stability, 61, 329–342.
DOI: 10.1016/s0141-3910(97)00217-6
Google Scholar
[32]
Li Y, Sarkanen S., 2002. Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters, Macromolecules, 35, 9707-9715.
DOI: 10.1021/ma021124u
Google Scholar
[33]
Li JC, He Y, Inoue Y, 2003. Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin, Polym Int, 52, 949-955.
DOI: 10.1002/pi.1137
Google Scholar
[34]
Li Y, Sarkanen S., 2005. Miscible blends of kraft lignin derivatives with low-Tg polymers, Macromolecules, 38 , 2296-2306.
DOI: 10.1021/ma047546g
Google Scholar
[35]
Mohanty A. K., M. Misraa, G. Hinrichsen., 2000. Biofibres, biodegradable polymers and biocomposites,. Technical University of Berlin, Institute of Nonmetallic Materials, Polymer Physics, Englische Str. 20, D-10587 Berlin, Germany (Received: September 27, 1999; revised: March 2, 2000).
Google Scholar
[36]
Mohanty, A. K., Misra, M., & Drzal, L. T., 2002. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world,. Journal of Polymers and the Environment, 10(1-2), 19-26.
DOI: 10.4324/9781315793245-107
Google Scholar
[37]
Manzur, A., Limon-Gonzalez, M., & Favela-Torres, E., 2004. Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi,. Journal of Applied Polymer Science, 92, 265–271.
DOI: 10.1002/app.13644
Google Scholar
[38]
Nitz H, Semke H, Landers R, 2001. Reactive extrusion of polycaprolactone compounds containing wood flour and lignin, J Appl Polym Sci, 81, 1972-(1984).
DOI: 10.1002/app.1628
Google Scholar
[39]
Ogboo Chikere Aja, Hussain H. Al-Kayiem, 2013. Review of municipal solid waste management options in Malaysia, with an emphasis on sustainable waste-to-energy options,. Journal of Material Cycles and Waste Management.
DOI: 10.1007/s10163-013-0220-z
Google Scholar
[40]
Okubo K, Fujii T., 2002. Eco-composites using bamboo and other natural fibers and their mechanical properties". In: Proceedings of the international workshop on 'Green', composites, p.17–21.
Google Scholar
[41]
Plaukett D, Andersen TL, Pedersen WB, Nielsen L., 2003. Biodegradable composites based on polylactide and jute fibers,. Compos Sci Technol 63: 1287–1296.
DOI: 10.1016/s0266-3538(03)00100-3
Google Scholar
[42]
Posada, J. A., Naranjo, J. M., López, J. A., Higuita, J. C., & Cardona, C. A., 2011. Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol,. Process Biochemistry, 46(1), 310-317.
DOI: 10.1016/j.procbio.2010.09.003
Google Scholar
[43]
Pye, E.K., 2006. Industrial lignin production and applications. In: Kamm, B., Gruber, P.R., Kamm M., (eds. ) Biorefineries—Industrial Processes and Products,. Status Quo and Future Directions, vol. 2, p.165.
DOI: 10.1002/9783527619849
Google Scholar
[44]
Shibata, S., Cao, Y., & Fukumoto, I., 2005. Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties,. Polymer testing, 24(8), 1005-1011.
DOI: 10.1016/j.polymertesting.2005.07.012
Google Scholar
[45]
Stewart, D., 2008. Lignin as a base material for materials applications,. Chemistry, application and economics. Ind. Crops Prod. 27, 202–207.
DOI: 10.1016/j.indcrop.2007.07.008
Google Scholar
[46]
Tasaki O, Hiraide A, Shiozaki T, Yamamura H, Ninomiya N, Sugimoto H., 1999. The dimer and trimer of 3-hydroxybutyrate oligomer as a precursor of ketone bodies for nutritional care,. J Parenter Enteral Nutr 23: 321–325.
DOI: 10.1177/0148607199023006321
Google Scholar
[47]
Tharanathan, R. N., 2003. Biodegradable films and composite coatings: past, present and future,. Trends in Food Science and Technology, 14, 71–78.
DOI: 10.1016/s0924-2244(02)00280-7
Google Scholar
[48]
Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A., 2009. Carbohydr Polym 78: 422.
Google Scholar
[49]
Thomas S.M., 2001. Biomass Grass makes for composite Cars, Mater. World, 9, 24.
Google Scholar
[50]
Wu Q, Sun SQ, Yu PHF, Chen AXZ, Chen GQ., 2000. Environmental dependence of microbial synthesis of polyhydroxyalkanoates,. Acta Polym Sin 6: 751–756.
Google Scholar
[51]
Yahaya N, 2008. Overview of solid waste management in Malaysia,. In: Workshop on carbon finance and municipal solid waste management in Malaysia, Environment Institute of Malaysia (EiMAS).
Google Scholar
[52]
Yrikou J., Briassoulis D., 2007. Biodegradation of Agricultural Plastic Films,: A Critical Review. J Polym Environ. 15, 125.
Google Scholar