Current Research in Biodegradable Plastics

Article Preview

Abstract:

Synthetic polymers are important in many branches of industry, particularly in the packaging industry. However, it has an undesirable influence on the environment and causes problems with deposition of waste and consumption. Therefore, there is a tendency to replace the polymer with biodegradable polymer that undergoes a process. This review summarizes the data on consumption, the level of biodegradation, the reliability of commercialization and production from renewable sources. Some biodegradable plastics that have been commercialized are starch based plastics, bacteria based plastics, soy based plastics, cellulose based plastics, lignin based plastics and natural fiber reinforced plastics. Production of this kind of material and its introduction to the market is important for the natural environmental.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-280

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Akaranta, O., & Oku, G. E., 1999. Erratum to: Some properties of cassava mesocarp carbohydrates-low density polyethylene blends,. Carbohydrate Polymers, 34, 403–405.

DOI: 10.1016/s0144-8617(97)00108-2

Google Scholar

[2] Arvanitoyannis, I., Biliaderis, C. G., Ogawa, H., & Kawasaki, N., 1998. Biodegradable films made from low density polyethylene (LDPE), rice starch and potato starch for food packaging application,: Part I. Carbohydrate Polymer, 36, 89–104.

DOI: 10.1016/s0144-8617(98)00016-2

Google Scholar

[3] Agamuthu, P., & Fauziah, S. H., 2006. MSW disposal in Malaysia: landfill management,. In Proceedings of the 2nd expert meeting on solid waste management in Asia and the Pacific islands, Kitayushu (pp.23-24).

Google Scholar

[4] Agamuthu, P., Khidzir, K. M., & Hamid, F. S., 2009. Drivers of sustainable waste management in Asia,. Waste Management & Research, 27(7), 625-633.

DOI: 10.1177/0734242x09103191

Google Scholar

[5] Bledzki AK, Gassan J., 1999. Progr Polym Sci 24: 221.

Google Scholar

[6] Byrom D, 1987. Polymer synthesis by microorganisms: Technology and economics,. Trends in Biotechnology; 5: 246-250.

DOI: 10.1016/0167-7799(87)90100-4

Google Scholar

[7] Chen GQ., 2009. A polyhydroxyalkanoates based bio- and materials industry,. Chem Soc Rev. 38: 2434–2446.

Google Scholar

[8] Chee J.Y., Yoga S., Lau N., Ling S., Raeid M., Abed M., Sudesh K., 2010. Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics,. Current research, technology and education topics in applied microbiology and microbial biotechnology. A Mendez -vilas edition, Formatex.

Google Scholar

[9] Cazacu, G., Pascu, M.C., Profire, L., Vasile, C., 2002. Environmental friendly polymer materials. Polyolefins-lignin based materials,. Environ. Prot. Ecol. 3(1), 242–248.

Google Scholar

[10] Cazacu, G., Pascu, M.C., Profire, L., Kowarski, A.I., Mihăes, M., Vasile, C., 2004. Lignin role in a complex polyolefin blend,. Ind. Crops Prod. 20, 261–273.

DOI: 10.1016/j.indcrop.2004.04.030

Google Scholar

[11] Cao, Y., Shibata, S., & Fukumoto, I., 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites part A,: Applied science and Manufacturing, 37(3), 423-429.

DOI: 10.1016/j.compositesa.2005.05.045

Google Scholar

[12] Chakraborty A, Sain M, Kortschot M, Cutler S., 2007. J Biobased Mat Bioenergy 1: 71.

Google Scholar

[13] Debeaufort F, Quezada-Gallo JA, Voilley A, 1998. Edible films and coatings: tomorrow's packagings: a review,. Crit Rev Food Sci Nutr 38(4): 299–313.

DOI: 10.1080/10408699891274219

Google Scholar

[14] Drumright, R. E., P. R. Gruber & D. E. Henton, 2000. Polylactic acid technology,. Advanced Materials 12, 1841-1846.

DOI: 10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e

Google Scholar

[15] Erlandsson, B., Karlsson, S., & Albertsson, A. C., 1997. The mode of action of corn starch and a prooxidant system in LDPE: Influence of thermooxidation and UV irradiation on the molecular weight changes,. Polymer Degradation and Stability, 55, 237–245.

DOI: 10.1016/s0141-3910(96)00139-5

Google Scholar

[16] Fan, D., Chang, P. R., Lin, N., Yu, J., & Huang, J., 2011. Structure and properties of alkaline lignin-filled poly (butylene succinate) plastics,. Iranian Polymer Journal, 20(1), 3-14.

Google Scholar

[17] Fleck-Arnold JE, 2000. Plastic mulch films additives and their effects,. Proc Natl Agr Plast Congr 29: 310 – 314.

Google Scholar

[18] Grothe E, Moo-Young M, Chisti Y., 1999. Fermentation optimization for the production of poly(beta-hydroxybutyric acid) microbial thermoplastic,. Enzyme and Microbial Technology 25: 132-141.

DOI: 10.1016/s0141-0229(99)00023-x

Google Scholar

[19] Guilbert S, Gontard N, Gorris LGM, 1996. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings,. Lebensm Wiss U Technol 29: 10–17.

DOI: 10.1006/fstl.1996.0002

Google Scholar

[20] Gupta, B., N. Revagade & J. Hilborn, 2007. Poly(lactic acid)fiber: An overview,. Progress in Polymer Science 32, 455-482.

DOI: 10.1016/j.progpolymsci.2007.01.005

Google Scholar

[21] Glasser, W. G., 1981. Potential role of lignin in tomorrow's wood utilization technologies. For. Prod. J.; (United States), 31(3).

Google Scholar

[22] Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G, 2001. Developing biodegradable mulch films from starch-based polymers,. Starch 53: 362 –367.

DOI: 10.1002/1521-379x(200108)53:8<362::aid-star362>3.0.co;2-j

Google Scholar

[23] He WN, Zhang ZM, Hu P, Chen GQ., 1999. "Microbial synthesis and characterization of polyhydroxyalkanoates.

Google Scholar

[24] by strain DG17 from glucose". Acta Polym Sin 6: 709–714.

Google Scholar

[25] Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M., 2008. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers,. Composites Science and Technology, 68(2), 424-432.

DOI: 10.1016/j.compscitech.2007.06.022

Google Scholar

[26] Inoue, K., Serizawa, S., Yamashiro, M., & Iji, M., 2007. Highly Functional Bioplastics (PLA compounds) Used for Electronic Products,. In Polymers and Adhesives in Microelectronics and Photonics, 2007. Polytronic 2007. 6th International Conference on (pp.73-76.

DOI: 10.1109/polytr.2007.4339141

Google Scholar

[27] John MJ, Anandjiwala RD, Pothan LA, Thomas S., 2007. Compos Interface 14: 733.

Google Scholar

[28] Kamariah N, 1998. Dealing with a load of rubbish. J Green Wave 2: 50–52.

Google Scholar

[29] Kaihara, S., Y. Osanai, K. Nishikawa, K. Toshima, Y. Doi & S. Matsumura, 2005. Enzymatic transformation of bacterialpolyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling,. Macromolecular Bioscience 5, 644-652.

DOI: 10.1002/mabi.200500030

Google Scholar

[30] Keshavarz, T. & I. Roy, 2010. Polyhydroxyalkanoates: bioplastics with a green agenda,. Current Opinion in Microbiology 13, 321-326.

DOI: 10.1016/j.mib.2010.02.006

Google Scholar

[31] Khabbaz, F., Albertsson, A. C., & Karlsson, S., 1998. Trapping of volatile low molecular weight photoproducts in inert and enhanced degradable LDPE,. Polymer Degradation and Stability, 61, 329–342.

DOI: 10.1016/s0141-3910(97)00217-6

Google Scholar

[32] Li Y, Sarkanen S., 2002. Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters, Macromolecules, 35, 9707-9715.

DOI: 10.1021/ma021124u

Google Scholar

[33] Li JC, He Y, Inoue Y, 2003. Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin, Polym Int, 52, 949-955.

DOI: 10.1002/pi.1137

Google Scholar

[34] Li Y, Sarkanen S., 2005. Miscible blends of kraft lignin derivatives with low-Tg polymers, Macromolecules, 38 , 2296-2306.

DOI: 10.1021/ma047546g

Google Scholar

[35] Mohanty A. K., M. Misraa, G. Hinrichsen., 2000. Biofibres, biodegradable polymers and biocomposites,. Technical University of Berlin, Institute of Nonmetallic Materials, Polymer Physics, Englische Str. 20, D-10587 Berlin, Germany (Received: September 27, 1999; revised: March 2, 2000).

Google Scholar

[36] Mohanty, A. K., Misra, M., & Drzal, L. T., 2002. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world,. Journal of Polymers and the Environment, 10(1-2), 19-26.

DOI: 10.4324/9781315793245-107

Google Scholar

[37] Manzur, A., Limon-Gonzalez, M., & Favela-Torres, E., 2004. Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi,. Journal of Applied Polymer Science, 92, 265–271.

DOI: 10.1002/app.13644

Google Scholar

[38] Nitz H, Semke H, Landers R, 2001. Reactive extrusion of polycaprolactone compounds containing wood flour and lignin, J Appl Polym Sci, 81, 1972-(1984).

DOI: 10.1002/app.1628

Google Scholar

[39] Ogboo Chikere Aja, Hussain H. Al-Kayiem, 2013. Review of municipal solid waste management options in Malaysia, with an emphasis on sustainable waste-to-energy options,. Journal of Material Cycles and Waste Management.

DOI: 10.1007/s10163-013-0220-z

Google Scholar

[40] Okubo K, Fujii T., 2002. Eco-composites using bamboo and other natural fibers and their mechanical properties". In: Proceedings of the international workshop on 'Green', composites, p.17–21.

Google Scholar

[41] Plaukett D, Andersen TL, Pedersen WB, Nielsen L., 2003. Biodegradable composites based on polylactide and jute fibers,. Compos Sci Technol 63: 1287–1296.

DOI: 10.1016/s0266-3538(03)00100-3

Google Scholar

[42] Posada, J. A., Naranjo, J. M., López, J. A., Higuita, J. C., & Cardona, C. A., 2011. Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol,. Process Biochemistry, 46(1), 310-317.

DOI: 10.1016/j.procbio.2010.09.003

Google Scholar

[43] Pye, E.K., 2006. Industrial lignin production and applications. In: Kamm, B., Gruber, P.R., Kamm M., (eds. ) Biorefineries—Industrial Processes and Products,. Status Quo and Future Directions, vol. 2, p.165.

DOI: 10.1002/9783527619849

Google Scholar

[44] Shibata, S., Cao, Y., & Fukumoto, I., 2005. Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties,. Polymer testing, 24(8), 1005-1011.

DOI: 10.1016/j.polymertesting.2005.07.012

Google Scholar

[45] Stewart, D., 2008. Lignin as a base material for materials applications,. Chemistry, application and economics. Ind. Crops Prod. 27, 202–207.

DOI: 10.1016/j.indcrop.2007.07.008

Google Scholar

[46] Tasaki O, Hiraide A, Shiozaki T, Yamamura H, Ninomiya N, Sugimoto H., 1999. The dimer and trimer of 3-hydroxybutyrate oligomer as a precursor of ketone bodies for nutritional care,. J Parenter Enteral Nutr 23: 321–325.

DOI: 10.1177/0148607199023006321

Google Scholar

[47] Tharanathan, R. N., 2003. Biodegradable films and composite coatings: past, present and future,. Trends in Food Science and Technology, 14, 71–78.

DOI: 10.1016/s0924-2244(02)00280-7

Google Scholar

[48] Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A., 2009. Carbohydr Polym 78: 422.

Google Scholar

[49] Thomas S.M., 2001. Biomass Grass makes for composite Cars, Mater. World, 9, 24.

Google Scholar

[50] Wu Q, Sun SQ, Yu PHF, Chen AXZ, Chen GQ., 2000. Environmental dependence of microbial synthesis of polyhydroxyalkanoates,. Acta Polym Sin 6: 751–756.

Google Scholar

[51] Yahaya N, 2008. Overview of solid waste management in Malaysia,. In: Workshop on carbon finance and municipal solid waste management in Malaysia, Environment Institute of Malaysia (EiMAS).

Google Scholar

[52] Yrikou J., Briassoulis D., 2007. Biodegradation of Agricultural Plastic Films,: A Critical Review. J Polym Environ. 15, 125.

Google Scholar