[1]
Averous. L, Moroa. L, Dole. P, & Fringant.C. 2000. Properties of thermoplastic blends: starch–polycaprolactone. Polymer. 41: 4157–4167.
DOI: 10.1016/s0032-3861(99)00636-9
Google Scholar
[2]
Bikiaris. D, Prinos. J, Koutsopoulos. K, Vouroutzis. N, Pavlidou. E, Frangi. N & Panayiotou.C. 1998. LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polymer Degradation and Stability. 59: 287-291.
DOI: 10.1016/s0141-3910(97)00126-2
Google Scholar
[3]
Carvalho. A.J. F, Marcia. D, Zambon A. Curvelo. A & Gandini. A. 2005. Thermoplastic starch modification during melt processing: Hydrolysis catalyzed by carboxylic acids. Carbohydrate Polymers. 62: 387–390.
DOI: 10.1016/j.carbpol.2005.08.025
Google Scholar
[4]
Chandra. R & Rustgi. R. 1997. Biodedegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability. 56: 185-202.
DOI: 10.1016/s0141-3910(96)00212-1
Google Scholar
[5]
Comyn. J. 1997. Chemistry of Adhesives which Harden without Chemical reaction. In Adhesion Science. The royal Society of Chemistry, Thomas Graham House. United kingdom.
DOI: 10.1039/9781847550064-00054
Google Scholar
[6]
Davies, G., & Henrissat, B. 1995 Structures and mechanisms of glycosyl hydrolyses. Structure, 3, 853-859.
Google Scholar
[7]
Fang, J. M., Fowler, P. A., Tomkinson, J. & Hill, C.A.S. 2002 The preparation and characterization of a series of chemically modified potato starches. Carbohydrate Polymers, 47, 245-252.
DOI: 10.1016/s0144-8617(01)00187-4
Google Scholar
[8]
Hirashima. M, Takahashi. R & Nishinari. K. 2005. Effects of adding acids before and after gelatinization on the viscoelasticity of cornstarch pastes. Food Hydrocolloids. 19: 909–914.
DOI: 10.1016/j.foodhyd.2004.12.004
Google Scholar
[9]
Jayasekara, R., Harding, I., Bowater, I., Christie, G. B. Y. & Lonergan, G. T. 2004 Preparation, surface modification and characterisation of solution cast starch. PVA blended films. Polymer Testing, 23, 17–27.
DOI: 10.1016/s0142-9418(03)00049-7
Google Scholar
[10]
Ning, W., Jiugao, Y., Xiaofei, M., & Ying, W. 2007 The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydrate Polymers, 67, 446–453.
DOI: 10.1016/j.carbpol.2006.06.014
Google Scholar
[11]
Raquez, J., Nabar, Y., Srinivasan, M., Shin, B., Narayan, R., & Dubois, P., 2008 Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 74, 159-169.
DOI: 10.1016/j.carbpol.2008.01.027
Google Scholar
[12]
Ramis. X, Cadenatoa. A, Sallaa. J. M, Moranchoa. J. M, Contat. A.V. L, & A. Ribes. A. 2004. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability. 86: 483-491.
DOI: 10.1016/j.polymdegradstab.2004.05.021
Google Scholar
[13]
Shi. R, Zhang. Z, Liu. Q, Han. Y, Zhang. L, Chen. D & Tian. W. 2007. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydrate Polymers. 69: 748–755.
DOI: 10.1016/j.carbpol.2007.02.010
Google Scholar
[14]
Singh, J., Kaur, L., & McCarthy, O. J. 2007 Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 21, 1–22.
DOI: 10.1016/j.foodhyd.2006.02.006
Google Scholar
[15]
Soest. J.J.G. V, Benes. K, Wit. D & Vliegenthart. J.F.G. 1996. The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer. 37(16): 3543-3552.
DOI: 10.1016/0032-3861(96)00165-6
Google Scholar
[16]
Ning. W, Jiugao. Y, Xiaofei. M & Ying. M. 2007. The influence of citric acid on the properties of thermoplasticstarch/linear low-density polyethylene blends. Carbohydrate Polymers. 67: 446–453.
DOI: 10.1016/j.carbpol.2006.06.014
Google Scholar
[17]
Xie, X. J., & Liu, Q. 2004 Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch/Starke, 56, 364–370.
DOI: 10.1002/star.200300261
Google Scholar