[1]
R. Sabelli, S. Mahin, C. Chang, Seismic demands on steel braced frame buildings with buckling-restrained braces, Eng. Struct. 25 (2003) 655–666.
DOI: 10.1016/s0141-0296(02)00175-x
Google Scholar
[2]
M.S. Alam, M.A. Youssef, M. Nehdi, Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review, Can. J. Civ. Eng. 34 (2007) 1075–1086.
DOI: 10.1139/l07-038
Google Scholar
[3]
O.E. Ozbulut, S. Hurlebaus, R. Desroches, Seismic Response Control Using Shape Memory Alloys: A Review, J. Intell. Mater. Syst. Struct. 22 (2011) 1531–1549.
DOI: 10.1177/1045389x11411220
Google Scholar
[4]
Y. Zhang, S. Zhu, A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation, Smart Mater. Struct. 16 (2007) 1603–1613.
DOI: 10.1088/0964-1726/16/5/014
Google Scholar
[5]
J. Ocel, R. DesRoches, R.T. Leon, W.G. Hess, R. Krumme, J.R. Hayes, et al., Steel Beam-Column Connections Using Shape Memory Alloys, J. Struct. Eng. 130 (2004) 732–740.
DOI: 10.1061/(asce)0733-9445(2004)130:5(732)
Google Scholar
[6]
S. Moradi, M.S. Alam, Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance, J. Intell. Mater. Syst. Struct. (2014) 1045389X14529032.
DOI: 10.1177/1045389x14529032
Google Scholar
[7]
O.E. Ozbulut, P.N. Roschke, P.Y. Lin, C.H. Loh, GA-based optimum design of a shape memory alloy device for seismic response mitigation, Smart Mater. Struct. 19 (2010) 065004.
DOI: 10.1088/0964-1726/19/6/065004
Google Scholar
[8]
M. Dolce, D. Cardone, F.C. Ponzo, Shaking-table tests on reinforced concrete frames with different isolation systems, Earthq. Eng. Struct. Dyn. 36 (2007) 573–596.
DOI: 10.1002/eqe.642
Google Scholar
[9]
B. Asgarian, S. Moradi, Seismic response of steel braced frames with shape memory alloy braces, J. Constr. Steel Res. 67 (2011) 65–74.
DOI: 10.1016/j.jcsr.2010.06.006
Google Scholar
[10]
J. McCormick, R. DesRoches, D. Fugazza, F. Auricchio, Seismic Assessment of Concentrically Braced Steel Frames with Shape Memory Alloy Braces, J. Struct. Eng. 133 (2007) 862–870.
DOI: 10.1061/(asce)0733-9445(2007)133:6(862)
Google Scholar
[11]
F. Auricchio, D. Fugazza, R. DesRoches, Earthquake performance of steel frames with Nitinol braces, J. Earthq. Eng. v 10, n SP (2006) 45 – 66.
DOI: 10.1080/13632460609350628
Google Scholar
[12]
B. Asgarian, H.R. Shokrgozar, BRBF response modification factor, J. Constr. Steel Res. 65 (2009) 290–298.
DOI: 10.1016/j.jcsr.2008.08.002
Google Scholar
[13]
S. Moradi, M.S. Alam, B. Asgarian, Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces, Struct. Des. Tall Spec. Build. (2014).
DOI: 10.1002/tal.1149
Google Scholar
[14]
S. Mazzoni, F. McKenna, OpenSees command language manual, Pacific Earthq. Eng. Res. Cent. (2006).
Google Scholar
[15]
D. Fugazza, Shape-memory alloy devices for earthquake engineering: Mechanical properties, constitutive modeling and numerical simulations, (2003).
Google Scholar
[16]
D. Vamvatsikos, C.A. Cornell, Incremental dynamic analysis, Earthq. Eng. Struct. Dyn. 31 (2002) 491–514.
DOI: 10.1002/eqe.141
Google Scholar