Numerical Modeling of Deformation Processes in Rock Pillars

Article Preview

Abstract:

The mathematical model of rock mass in the context of its internal structure, anisotropy, loss of strength, elastic energy accumulation and release is considered. The numerical solution to the problem of quasistatic deformation in a rock mass pillar is obtained by the finite element method. The sequential development of softening and residual strength zones is considered. It is shown that if the softening modulus is strong enough then the deformation process becomes unstable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-205

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kalashnik N.А., Bessonov I.I., Kalashnik А.I. Defining the stable of chambers and dimensions of pillars. Apatity, Kola Science Centre, RAS, 2000. - 85 p.

Google Scholar

[2] Baryakh A.A., Asanov V.A., Toksarov V.N., Gilev M.V. Evaluating the residual life of salt pillars / Journal of Mining Science. 1998. – vol. 34. - Issue 1. – pp.14-20.

DOI: 10.1007/bf02765520

Google Scholar

[3] Baryakh A.A., Gegin A.S. Stability assessment of interchamber pillars / Journal of Mining Science. 1997. – vol. 33. - Issue 1. – pp.23-30.

DOI: 10.1007/bf02765424

Google Scholar

[4] Sporykhin А.N., Shashkin А.I. Defining optimal dimensions of pillars / Mathematical modeling in information systems and technologies. Voronezh: Pub. Vorenezh State Tech. Academy – 2000. – Issue 4. – pp.245-248.

Google Scholar

[5] Esterhuizen G.S., Dolinar D.R., Ellenberger J.L. Pillar strength in underground stone mines in the United States / Int. J. Rock Mechanics and Mining Sciences. – 2011. – v. 48. – pp.42-50.

DOI: 10.1016/j.ijrmms.2010.06.003

Google Scholar

[6] Chun'an Tang, Shibin Tang. Applications of rock failure process analysis (RFPA) method / J. Rock Mechanics and Geotechnical Engineering. – 2011, 3 (4): 352-372.

DOI: 10.3724/sp.j.1235.2011.00352

Google Scholar

[7] Adushkin, V.V. Kocharyan, G.G. Trigger Processes in Geosystems / Izvestiya – physics of the solid Earth. – 2011. – vol. 47. – Issue: 3. – pp.259-261.

DOI: 10.1134/s1069351311020017

Google Scholar

[8] Klishin S.V., Klishin V.I., Opruk G. Yu. Modeling of coal drawing in mining of steeply pitching thick coal seams / Physical and technical problems of mining – 2013. – No. 6. P. 105–116.

DOI: 10.1134/s1062739149060130

Google Scholar

[9] Seryakov V.M., Volchenko G.N., Seryakov A.V. Geomechanical substantiation of borehole charge parameters in breaking of stressed rock mass / Journal of Mining Science. 2003. – vol. 39. - Issue 5. – pp.438-443.

DOI: 10.1023/b:jomi.0000029306.30499.df

Google Scholar

[10] Eremenko V.A., Gakhova L.N., Semenyakin E.N. Formation of higher stress zones and clusters of seismic events in deep mining in Tashtagol / Journal of Mining Science. 2012. – vol. 48. - Issue 2. – pp.269-275.

DOI: 10.1134/s1062739148020074

Google Scholar

[11] Khan G.N. Discrete element modeling of rock failure dynamics / Journal of Mining Science. 2012. – vol. 48. - Issue 1. – pp.96-102.

Google Scholar

[12] Revuzhenko А.F. Mechanics of elastic-plastic media and nonstandard analysis. Novosibirsk State University, 2000, 428p.

Google Scholar

[13] Kolymbas D., Lavrikov S.V., Revuzhenko A.F. Deformation of anisotropic rock mass in the vicinity of a long tunnel / Journal of Mining Science. 2012. – vol. 48. - Issue 6. – pp.962-974.

DOI: 10.1134/s1062739148060032

Google Scholar

[14] Lavrikov S.V., Mikenina O.A., Revuzhenko A.F. A non-Archimedean number system to characterize the structurally inhomogeneous rock behavior nearby a tunnel. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3 (2): pp.153-160.

DOI: 10.3724/sp.j.1235.2011.00153

Google Scholar