[1]
D. Hulbert, D. Jiang, D. Dudina, A. Mukherjee, The synthesis and consolidation of hard materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater. 27(2) (2009) 367-375.
DOI: 10.1016/j.ijrmhm.2008.09.011
Google Scholar
[2]
R. Orrù, R. Licheri, A.M. Locci, A. Cincotti and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. 63(4–6) (2009) 127–287.
DOI: 10.1016/j.mser.2008.09.003
Google Scholar
[3]
Z. Munir, U. Tamburini and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci. 41(3) (2006) 763–777.
DOI: 10.1007/s10853-006-6555-2
Google Scholar
[4]
N. Saheb, Z. Iqbal, A. Khalil, A. Hakeem, N. Aqeeli, T. Laoui, A. Al-Qutub and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, J. Nanomater. 1 (2012) 13.
DOI: 10.1155/2012/983470
Google Scholar
[5]
V. Yu. Filimonov, M.A. Korchagin, N.Z. Lyakhov, Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics. 19 (2011) 833-840.
DOI: 10.1016/j.intermet.2010.11.028
Google Scholar
[6]
S.K. Shee, S.K. Pradhan, M. De, Effect of alloying on the microstructure and mechanical properties of Ni3Al, J. Alloys Compd., 265 (1-2) (1998) 249-256.
DOI: 10.1016/s0925-8388(97)00291-0
Google Scholar
[7]
J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Y. S. Kwon, Spark Plasma Sintering of nanoscale (Ni+Al) powder mixture, Solid State Phenomena. 119 (2007) 35-38.
DOI: 10.4028/www.scientific.net/ssp.119.35
Google Scholar
[8]
M.A. Korchagin, D.V. Dudina, Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites, Combust Explos Shock Waves. 43 (2) (2007) 176.
DOI: 10.1007/s10573-007-0024-3
Google Scholar
[9]
S.C. Deevi, V.K. Sikka. Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4 (1996) 357–375.
DOI: 10.1016/0966-9795(95)00056-9
Google Scholar
[10]
L.I. Shevtsova, V.I. Mali, A.A. Bataev, I.A. Bataev, D.S. Terent'ev, V.S. Lozhkin, Structure and properties of composite materials aluminum-nickel aluminide, produced by the SPS method, The 8 international forum on strategic technologies (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616956
Google Scholar
[11]
I.A. Astapov, K.P. Eremina, M.A. Teslina, S.N. Khimukhin, V.V. Gostishchev, Structure and properties of functional coatings produced by electrospark deposition of a steel 20X13, Obrabotka metallov. 4(61) (2013) 12-18.
Google Scholar
[12]
D.V. Lazurenko, I.A. Bataev, A.A. Ruktuev, A.M. Teplyh, V.V. Samoylenko, I.A. Polyakov, The improvement of corrosion resistance of steel constructions by using the processes of overlay welding of the powder mixtures and explosion welding, Obrabotka metallov. 4(61) (2013).
Google Scholar
[13]
I. Bataev, A. Bataev, D. Pavliukova, V. Mali, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[14]
L.I. Shevtsova, I.A. Bataev, V.I. Mali, A.G. Anisimov, D.V. Lazurenko, T.S. Sameyshcheva, Influence of heat temperature on the structure and mechanical properties of the material fabricated by spark plasma sintering of the PN85U15 powder, Obrabotka metallov. 4(61) (2013).
Google Scholar
[15]
М.I. Lerner, V.V. Shimanskiy, G.G. Saveliev, Passivation of metal nanopowders obtained by electric explosion of conductors, Bulletin of the Tomsk Polytechnic University. 310(2) (2007) 122-126.
Google Scholar
[16]
L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, V.E. Ovcharenko, L.Z. Zhou, H.Q. Ye, Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion, Intermetallics. 17 (2009) 572-577.
DOI: 10.1016/j.intermet.2009.01.004
Google Scholar