[1]
J. Hallberg, R.C. Hanson, The elastic constants of cuprous oxide, Phys. Status Solidi. 42 (1970) 305-310.
DOI: 10.1002/pssb.19700420131
Google Scholar
[2]
J. Berger, Comportement thermoelastique de monocristaux de Cu2O, Solid State Communic. 26 (1978) 403-405.
DOI: 10.1016/0038-1098(78)90514-8
Google Scholar
[3]
M.H. Manghnani, W.S. Brower, H.S. Parker, Anomalous elastic behavior in Cu2O under pressure, Phys. Status Solidi (a). 25 (1974) 69-76.
DOI: 10.1002/pssa.2210250103
Google Scholar
[4]
A.I. Andriyevsky, M.M. Pidorya, Calculation of the Debye temperature of the elastic constants for copper oxide, Bulletin of higher educational institutions. Physics. 5 (1967) 123-124.
Google Scholar
[5]
C. Carabatos, B. Prevot, Rigid ion model lattice dynamics of cuprite (Cu2O), Phys. Status Solidi (b). 44 (1971) 701-712.
DOI: 10.1002/pssb.2220440229
Google Scholar
[6]
A.I. Andriyevsky, E.N. Dimarova, M.M. Pidorya, On the thermal conductivity of single-crystal and polycrystalline copper oxide, Phys. Status Solidi. 4 (1962) 163-167.
Google Scholar
[7]
V.N. Belomestnykh, E.G. Soboleva, Coefficients transverse strains of the cubic ion crystals, Letters on materials. 1 (2011) 84-87.
Google Scholar
[8]
V.N. Belomestnykh, E.G. Soboleva, Acoustic, elastic and inelastic properties of sodium halogenate crystals, Tomsk: TPU, (2009).
Google Scholar
[9]
V. Belomestnykh, E. Soboleva, Poisson¢s ratios of the cubic ion crystals, Abstr. Book 8 Intern. Workshop on Auxetics and Related Systems AUXETICS´11. (2011) 97-99.
Google Scholar