[1]
K. Morsi, Review reaction synthesis processing of Ni-Al intermetallic materials. Mater Sci. Eng. A 299 (2001) 1-15.
Google Scholar
[2]
S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, M.F. Vieira, Anisothermal solid-state reactions of Ni-Al nanometric multilayers, 19, Intermetallics, (2011), 350 – 356.
DOI: 10.1016/j.intermet.2010.10.021
Google Scholar
[3]
Hee Y. Kim, Dong S. Chung, Soon H. Hong, Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils / Scripta Materialia 54 (2006), 1715–1719.
DOI: 10.1016/j.scriptamat.2005.12.032
Google Scholar
[4]
Ping Zhu, J.C.M. Li, C.T. Liu, Reaction mechanism of combustion synthesis of NiAl / Materials Science and Engineering, A329-331, (2002), 57–68.
DOI: 10.1016/s0921-5093(01)01549-0
Google Scholar
[5]
J. Rawers, K. Perry, Crack initiation in laminated metal-intermetallic composites, Journal of Material Science, 31 (1996) 901 – (1906).
DOI: 10.1007/bf00360755
Google Scholar
[6]
H. Y. Kim, D. S. Chungb, S. H. Hong, Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites, Materials Science and Engineering A 396 (2005) 376–384.
DOI: 10.1016/j.msea.2005.01.044
Google Scholar
[7]
P. Zhu , J.C.M. Li, C.T. Liu, Combustion reaction in multilayered nickel and aluminum foils, Materials Science and Engineering A239–240 (1997) 532–539.
DOI: 10.1016/s0921-5093(97)00627-8
Google Scholar
[8]
J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Young Soon Kwon, Spark Plasma Sintering of Nanoscale (Ni+Al) Powder Mixture, Solid State Phenomena Vol. 119 (2007) 35-38.
DOI: 10.4028/www.scientific.net/ssp.119.35
Google Scholar
[9]
T.S. Sameyshcheva, A.A. Bataev, P.S. Yartsev, I.A. Bataev, I.A. Polyakov, Metallic-Intermetallic composites produced by vacuum casting and annealing of Ni and Al, The 7th international forum on strategic technology 2012 (IFOST 2012), 1(2012).
DOI: 10.1109/ifost.2012.6357550
Google Scholar
[10]
V. I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Advanced Materials Research. 311 – 313 (2011) 236-239.
DOI: 10.4028/www.scientific.net/amr.311-313.236
Google Scholar
[11]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[12]
D. V. Pavliukova, V. I. Mali, A. A. Bataev, P. S. Yartsev, T. S. Sameyshcheva, L. I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616967
Google Scholar
[13]
L.I. Shevtsova, I.A. Bataev, V.I. Mali, A.G. Anisimov, D.V. Lazurenko, T.S. Sameyshcheva Influence of heat temperature on the structure and mechanical properties of the material fabricated by spark plasma sintering of the PN85U15 powder, Obrabotka metallov 4(61) (2013).
Google Scholar
[14]
C. -C. Hsi, M. -S. Shi, and W. Wu, Growth of Intermetallic Phases in Al/Cu Composites at Various Annealing Temperatures During the ARB Process, Met. Mater. Int., Vol. 18, No. 1 (2012) 1-6.
DOI: 10.1007/s12540-012-0001-6
Google Scholar
[15]
J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Young Soon Kwon, Spark Plasma Sintering of Nanoscale (Ni+Al) Powder Mixture, Solid State Phenomena Vol. 119 (2007) 35-38.
DOI: 10.4028/www.scientific.net/ssp.119.35
Google Scholar