[1]
V. Molnár, G. Fedorko, B. Stehlíková, M. Tomašková, Z. Hulínová, Analysis of Asymmetrical Effect of Tension Forces in Conveyor Belt on the Idler Roll Contact Forces in the Idler Housing, Measurement 52 (2014) 22-32.
DOI: 10.1016/j.measurement.2014.02.035
Google Scholar
[2]
P.D. McFadden, J.D. Smith, Vibration monitoring of rolling element bearings by the high-frequency resonance technique-a review, Tribology International 17 (1984) 3–10.
DOI: 10.1016/0301-679x(84)90076-8
Google Scholar
[3]
P.D. McFadden, J.D. Smith, Model for the vibration produced by a single point defect in a rolling element bearing, Journal of Sound and Vibration 96 (1984) 69–82.
DOI: 10.1016/0022-460x(84)90595-9
Google Scholar
[4]
R.B. Randall, J. Antoni, Rolling element bearing diagnostics-A tutorial, Mechanical Systems and Signal Processing 25(2) (2011) 485–520.
DOI: 10.1016/j.ymssp.2010.07.017
Google Scholar
[5]
P.D. Samuel, D.J. Pines, A review of vibration-based techniques for helicopter transmission diagnostics, Journal of Sound and Vibration 282 (1–2) (2005) 475-508.
DOI: 10.1016/j.jsv.2004.02.058
Google Scholar
[6]
W. Bartelmus, Root cause and vibration signal analysis for gearbox condition monitoring Insight-Non-Destructive Testing and Condition Monitoring 50 (4) (2008) 195-201.
DOI: 10.1784/insi.2008.50.4.195
Google Scholar
[7]
R. Zimroz, W. Bartelmus, Application of adaptive filtering for weak impulsive signal recovery for bearings local damage detection in complex mining mechanical systems working under condition of varying load, Diffusion and Defect Data Pt. B: Solid State Phenomena 180 (2012).
DOI: 10.4028/www.scientific.net/ssp.180.250
Google Scholar
[8]
R. Makowski, R. Zimroz, Adaptive bearings vibration modelling for diagnosis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Notes in Bioinformatics), 6943 LNAI (2011) 248–259.
DOI: 10.1007/978-3-642-23857-4_26
Google Scholar
[9]
R. Makowski, R. Zimroz, A procedure for weighted summation of the derivatives of reflection coefficients in adaptive Schur filter with application to fault detection in rolling element bearings, Mechanical Systems and Signal Processing 38 (1) (2013).
DOI: 10.1016/j.ymssp.2012.05.005
Google Scholar
[10]
R. Makowski, R. Zimroz, New techniques of local damage detection in machinery based on stochastic modelling using adaptive Schur fi{TTP}-1279 lter, Applied Acoustics 77 (2014) 130–137.
DOI: 10.1016/j.apacoust.2013.05.015
Google Scholar
[11]
T. Barszcz, R. Zimroz, J. Urbanek, A. Jabłoński, W. Bartelmus, Bearings fault detection in gas compressor in presence of high level of non-Gaussian impulsive noise, Key Engineering Materials 569/570 (2013) 473-480.
DOI: 10.4028/www.scientific.net/kem.569-570.473
Google Scholar
[12]
R. Zimroz, W. Bartelmus, Gearbox condition estimation using cyclo-stationary properties of vibration signal, Key Engineering Materials 413-414 (2009) 471-478.
DOI: 10.4028/www.scientific.net/kem.413-414.471
Google Scholar
[13]
L. Yaguo, L. Jing, H. Zhengjia, J. Ming, A. Zuo, Review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing 35(1–2) (2013) 108-126.
DOI: 10.1016/j.ymssp.2012.09.015
Google Scholar
[14]
F. Zhipeng, L. Ming, Ch. Fulei, Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples, Mechanical Systems and Signal Processing 38(1) (2013) 165-205.
DOI: 10.1016/j.ymssp.2013.01.017
Google Scholar
[15]
J. Antoni, F. Bonnardot, A. Raad, M. Badaoui, Cyclostationary Modelling of Rotating Machine Vibration Signals, Mechanical Systems and Signal Processing 18 (2004) 1285–1314.
DOI: 10.1016/s0888-3270(03)00088-8
Google Scholar
[16]
J. Obuchowski, A. Wyłomańska, R. Zimroz, Stochastic modeling of time series with application to local damage detection in rotating machinery, Key Engineering Materials 569/570 (2013) 441-448.
DOI: 10.4028/www.scientific.net/kem.569-570.441
Google Scholar
[17]
J. Obuchowski, A. Wyłomańska, R. Zimroz, H. Hurd, Periodic autoregressive modeling of vibration time series from planetary gearbox used in bucket wheel excavator, Cyclostationarity: theory and methods / Fakher Chaari et al (eds. ) Springer 2014, 171-186.
DOI: 10.1007/978-3-319-04187-2_12
Google Scholar
[18]
J. Antoni, R.B. Randall, The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines, Mechanical Systems and Signal Processing 20(2) (2006) 308–331.
DOI: 10.1016/j.ymssp.2004.09.002
Google Scholar
[19]
J. Obuchowski, A. Wyłomańska, R. Zimroz, Selection of informative frequency band in local damage detection in rotating machinery, Mechanical Systems and Signal Processing 48(1–2), (2014) 138-152.
DOI: 10.1016/j.ymssp.2014.03.011
Google Scholar
[20]
J. Urbanek, T. Barszcz, R. Zimroz, J. Antoni, Application of averaged instantaneous power spectrum for diagnostics of machinery operating under non-stationary operational conditions, Measurement: Journal of the International Measurement Confederation 45 (7) (2012).
DOI: 10.1016/j.measurement.2012.04.006
Google Scholar
[21]
J. Dybała, R. Zimroz, Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal, Applied Acoustics 77 (2014) 195–203.
DOI: 10.1016/j.apacoust.2013.09.001
Google Scholar
[22]
J. Obuchowski, A. Wyłomańska, R. Zimroz, The local maxima method for enhancement of time-frequency map and its application to local damage detection in rotating machines, Mechanical Systems and Signal Processing 46(2) (2014) 389-405.
DOI: 10.1016/j.ymssp.2014.01.009
Google Scholar