The Use of Sophisticated Materials in the Construction of an Ultra-Light Trailer

Article Preview

Abstract:

This paper aims to study ultra-light materials, which will replace the conventional materials used in the production of trailers. Conventional materials used for the production of trailer frames are: galvanized steel or steel with untreated surface and various coatings. In addition to high strength, steel is characterized by a high specific weight, which significantly increases the weight of the trailer and reduces the permissible load. Therefore it is necessary to look for other materials that have a lower specific weight, but in the same time they meet strength requirements. The designed boat trailer has 25% less weight than the lightest boat trailer available on the European market.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-237

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Parvizian, A. Güzel, A. Jäger, B. Lambers, B. Svendsen, A.E. Tekkaya, H.J. Maier, Modeling of dynamic microstructure evolution of EN AW-6082 alloy during hot forward extrusion, Computational materials science 50 (2011) 1520–1525.

DOI: 10.1016/j.commatsci.2010.12.009

Google Scholar

[2] S. Das, L. Pelcastre, J. Hardell, B. Prakash, Effect of static and dynamic ageing on wear and friction behavior of aluminum 6082 alloy, Tribology international 60 (2013) 1–9.

DOI: 10.1016/j.triboint.2012.10.019

Google Scholar

[3] I. Duarte, M. Vesenjak, L. Krstulovic-Opara, Dynamic and quasi-static bending behavior of thin-walled aluminum tubes filled with aluminum foam, Composite structures 109 (2014) 48–56.

DOI: 10.1016/j.compstruct.2013.10.040

Google Scholar

[4] L. Guo, J. Yu, Dynamic bending response of double cylindrical tubes filled with aluminum foam, International journal of impact engineering 38 (2011) 85–94.

DOI: 10.1016/j.ijimpeng.2010.10.004

Google Scholar

[5] K. Kabir, T. Vodenitcharova, M. Hoffman, Response of aluminum foam-cored sandwich panels to bending load, Composites: Part B 64 (2014) 24–32.

DOI: 10.1016/j.compositesb.2014.04.003

Google Scholar

[6] Y. Conde, A. Pollien, A. Mortensen, Functional grading of metal foam cores for yield-limited lightweight sandwich beams, Scripta materialia 54 (2006) 539–543.

DOI: 10.1016/j.scriptamat.2005.10.050

Google Scholar

[7] J. Sha, T.H. Yip, M.H. Teo, FEM modeling of single-core sandwich and 2-core multilayer beams containing foam aluminum core and metallic face sheets under monolithic bending, Progress in natural science: Materials international 21 (2011) 127–138.

DOI: 10.1016/s1002-0071(12)60046-x

Google Scholar

[8] V. Crupi, G. Epasto, E. Guglielmino, Comparison of aluminum sandwiches for lightweight ship structures: Honeycomb vs. Foam, Marine structures 30 (2013) 74–96.

DOI: 10.1016/j.marstruc.2012.11.002

Google Scholar

[9] G. Campana, A. Ascari, A. Fortunato, Laser foaming of joining aluminum foam cores inside a hollow profile, Optics & laser technology 48 (2013) 331–336.

DOI: 10.1016/j.optlastec.2012.11.005

Google Scholar

[10] A. Scialpi, M. De Giorgi, L.A.C. Fillipps, F.W. Panella, Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials, Materials and design 29 (2008) 928–936.

DOI: 10.1016/j.matdes.2007.04.006

Google Scholar

[11] M.M. El-Rayes, E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082, Journal of materials processing technology 212 (2012) 1157–1168.

DOI: 10.1016/j.jmatprotec.2011.12.017

Google Scholar

[12] P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro, P.M.S.T. de Castro, Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminum alloys: a comparison, Theoretical and applied fracture mechanics 50 (2008) 81–91.

DOI: 10.1016/j.tafmec.2008.07.007

Google Scholar

[13] L.K. Zhu, Y. Yan, L.J. Qiao, A.A. Volinsky, Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load, Corrosion science 77 (2013) 360– 368.

DOI: 10.1016/j.corsci.2013.08.028

Google Scholar

[14] A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, A.K. Bradburry, Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure, Corrosion science 53 (2011).

DOI: 10.1016/j.corsci.2011.06.020

Google Scholar

[15] A. Azimi, F. Ashrafizadeh, M.R. Toroghinejad, F. Shahriari, Metallurgical assessment of critical defects in continuous hot dip galvanized steel sheets, Surface & coatings technology 206 (2012) 4376–4383.

DOI: 10.1016/j.surfcoat.2012.04.062

Google Scholar

[16] M. Safaeirad, M.R. Toroghinejad, F. Ashrafizadeh, Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets, Journal of materials processing technology 196 (2008) 205–212.

DOI: 10.1016/j.jmatprotec.2007.05.035

Google Scholar

[17] P.R. Seré, J.D. Culcasi, C.I. Elsner, A.R. Di Sarli, Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets, Surface and coatings technology 122 (1999) 143–149.

DOI: 10.1016/s0257-8972(99)00325-4

Google Scholar