[1]
G. Fedorko, P. Bindzár, V. Molnár, Influence of material transport on the environment, AT&P journal 9(7) (2002) 101-107. (original in Slovak).
Google Scholar
[2]
P. Vermes, F. Vas, Technical diagnostics and economy, Pécs, 2007. (original in Hungarian).
Google Scholar
[3]
P. Vermes, L. Herbály, F. Vas, Plant maintenance, Mezőtúr, 1996. (original in Hungarian).
Google Scholar
[4]
P. Stepanov, Y. Nikitin, Diagnostics of Mechatronic Systems on the Basis of Neural Networks with High-Performance Data Collection, in: Mechatronics 2013: Recent Technological and Scientific Advances, Springer Intrenational Publishing Swizerland, 2014: p.433.
DOI: 10.1007/978-3-319-02294-9_55
Google Scholar
[5]
G. Dorrell, T. William, Thomson, S. Roach, Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors, Industry Applications, IEEE Transactions 33(1) (1997).
DOI: 10.1109/28.567073
Google Scholar
[6]
L. Ruoyu, H. David, Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification, Instrumentation and Measurement IEEE Transactions 61(4) (2012) 990-1001.
DOI: 10.1109/tim.2011.2179819
Google Scholar
[7]
S.A. Mortazavizadeh, A. Vahedi, A.A. Zohouri, Detection of Stator Winding Inter-turn Short Circuit In Induction Motor Using Vibration Specified Harmonic Amplitude, in: 2nd International Conf. on Acoustics & Vibration, Sharif Univ. of Technology, Tehran, Iran, (2012).
Google Scholar
[8]
B.E. Hachemi, Mohamed, A review of induction motors signature analysis as a medium for faults detection, Industrial Electronics, IEEE Transactions 47(5) (2000) 984-993.
DOI: 10.1109/41.873206
Google Scholar
[9]
Y. Turygin, P. Božek, Mechatronic systems maintenance and repair management system, Transfer innovations 26 (2013) 3-5.
Google Scholar
[10]
N. Subhasis, B. Raj, A. Hamid, Toliyat, Performance analysis of a three-phase induction motor under mixed eccentricity condition, Energy Conversion, IEEE Transactions 17(3) (2002) 392-399.
DOI: 10.1109/tec.2002.801995
Google Scholar
[11]
J. Devaney, E. Levent, Detecting motor bearing faults, Instrumentation & Measurement Magazine, 7(4) 2004 30-50.
DOI: 10.1109/mim.2004.1383462
Google Scholar
[12]
Y.R. Nikitin, I.V. Abramov, CNC machines diagnostics, in: Proceedings 13-th International Simposium on Mechatronics, Trencianske Teplice, Slovakia, 2010: p.89–91.
Google Scholar
[13]
C.M. Riley, B.K. Lin, T.G. Habetler, G.B. Kliman, Stator current harmonics and their causal vibrations: a preliminary investigation of sensorless vibration monitoring applications, Industry Applications, IEEE Transactions 35(1) (1999) 94-99.
DOI: 10.1109/28.740850
Google Scholar
[14]
G.K. Singh, A.L. Ahmed, Induction machine drive condition monitoring and diagnostic research a survey, Electric Power Systems Research 64(2) (2003) 145-158.
DOI: 10.1016/s0378-7796(02)00172-4
Google Scholar
[15]
F. Briz, M.W. Degner, A.B. Diez, Online diagnostics, IEEE Transactions 40(4) (2004) 1153-1161.
Google Scholar
[16]
P. Božek, E. Pivarčiová, V. Prajová, Identification of selected defects of products in an automated production system, in: Fourth Forum of Young Researchers, 2014: pp.249-253.
Google Scholar
[17]
B. Akin, Ch. Seungdeog, U. Orguner, H.A. Toliyat, A simple real-time fault signature monitoring tool for motor-drive embedded fault diagnosis systems, Industrial Electronics, IEEE Transactions 58(5) (2011) 1990-(2001).
DOI: 10.1109/tie.2010.2051936
Google Scholar
[18]
K. Byunghwan, L. Kwanghwan, Y. Jinkyu, L. Sang Bin, E.J. Wiedenbrug, M.R. Shah, Automated detection of rotor faults for inverter-fed induction machines under standstill conditions, Industry Applications, IEEE Transactions 47(1) (2011) 55-64.
DOI: 10.1109/ecce.2009.5316465
Google Scholar