[1]
E. Hille. Representation of One-parameter Semigroups of Linear Transformations. Proc. Nat. Acad. Sci. U. S. A., 1942, 28: 175-178.
DOI: 10.1073/pnas.28.5.175
Google Scholar
[2]
K. Yosida. On the Di_erentiability and Representation of One-Parameter Semigroups of LinearOperators. J. Math. Soc. Japan., 1948, 1: 15-21.
Google Scholar
[3]
KUHNEMUND. A hille-yosida theorem for bi-continuous semigroups. Semigroup Forum, 2003, 67: 205-225.
DOI: 10.1007/s00233-002-5000-3
Google Scholar
[4]
A. Albanese and E. Mangino. Trotter-Kato theorems for bi-continuous semigroups and applica-tions to Feller semigroups. J. Math. Anal. Appl., 2003, 289: 477-492.
DOI: 10.1016/j.jmaa.2003.08.032
Google Scholar
[5]
F. Khnemund and J. van Neerven. A Lie-Trotter product formula for Ornstein-Uhlenbeck semigroups in in_nite dimensions. J. Evol. Equ., 2004, 4: 53-73.
DOI: 10.1007/s00028-003-0078-y
Google Scholar
[6]
JARA P. Rational approximation schemes for bi-continuous semigroups. Journal of Mathematical Analysis and Applications, 2008, 344: 956-968.
DOI: 10.1016/j.jmaa.2008.02.068
Google Scholar
[7]
PFEIFER D. Approximation-theoretic aspects of probabilistic representations for operator semigroups. Journal of Approximation Theory, 1985, 43: 271-296.
DOI: 10.1016/0021-9045(85)90103-0
Google Scholar