The RBF Neural Network Learning Algorithm Based on Entropy Clustering and Competitive

Article Preview

Abstract:

Research and analysis of RBF neural network structure and characteristics. Find out its shortcomings and propose an improved method for the deficiencies, then created a neural network model for using entropy-based clustering and competitive learning algorithm. Using MATLAB simulation tools for model simulation, confirmed the entropy clustering and competitive learning algorithm of FBF prediction neural network have high precision and generalization ability of stronger character.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1633-1636

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li Bo, Wang Xiufeng. The new [J] algorithm to determine the radial basis function network structure, Journal ofmanagement science, 1999, second, third, 22-27.

Google Scholar

[2] Lv Jianhong, Chen Jianqin, et al. Research on [J]nonlinear models for thermal processes based on fuzzyrules, China. Proceedings of the CSEE, 2002 The twenty-second volume eleventh issue, 132-137.

Google Scholar

[3] Huang Hongtao. A two-way choice of Gaussian function and radial basis function neural network algorithm based on[J], computer science, Chongqing, 2007; 134th, seventeenth, 211-213.

Google Scholar

[4] Yan Pingfan, Zhang Changshui. Artificial neural network and simulated evolution calculation [M]. Beijing: Tsinghua University press, (2003).

Google Scholar

[5] Li Renhou. Intelligent control theory and method [M]. Xi'an: Xi'an Jiao Tong University press, (1994).

Google Scholar