[1]
A. Z. Broder, Computational advertising and recommender systems, in Proceedings of the 2008 ACM conference on Recommender systems, 2008, pp.1-2.
DOI: 10.1145/1454008.1454009
Google Scholar
[2]
R. C. Wang and W. W. Cohen, Language-independent set expansion of named entities using the web, in Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, 2007, pp.342-350.
DOI: 10.1109/icdm.2007.104
Google Scholar
[3]
D. Nadeau, P. Turney, and S. Matwin, Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity, in Proceedings of the 19th International Conference on Advances in Artificial Intelligence, 2006, pp.266-277.
DOI: 10.1007/11766247_23
Google Scholar
[4]
O. Etzioni, M. Cafarella, D. Downey, A. -M. Popescu, T. Shaked, S. Soderland, et al., Unsupervised named-entity extraction from the web: An experimental study, Artificial Intelligence, vol. 165, pp.91-134, (2005).
DOI: 10.1016/j.artint.2005.03.001
Google Scholar
[5]
M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, Webtables: exploring the power of tables on the web, in Proceedings of the VLDB Endowment, 2008, pp.538-549.
DOI: 10.14778/1453856.1453916
Google Scholar
[6]
F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: a core of semantic knowledge, in Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, 2007, pp.697-706.
DOI: 10.1145/1242572.1242667
Google Scholar
[7]
H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and G. Attardi, Ranking very many typed entities on wikipedia, in Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, 2007, pp.1015-1018.
DOI: 10.1145/1321440.1321599
Google Scholar
[8]
D. Widdows and B. Dorow, A graph model for unsupervised lexical acquisition, in Proceedings of the 19th International Conference on Computational Linguistics, 2002, pp.1-7.
DOI: 10.3115/1072228.1072342
Google Scholar
[9]
A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M. Mitchell, Coupled semi-supervised learning for information extraction, in Proceedings of the Third ACM International Conference on Web Search and Data Mining, 2010, pp.101-110.
DOI: 10.1145/1718487.1718501
Google Scholar
[10]
B. Van Durme and M. Pasca, Finding Cars, Goddesses and Enzymes: Parametrizable Acquisition of Labeled Instances for Open-Domain Information Extraction, in Proceedings of the 23rd National Conference on Artificial Intelligence, 2008, pp.1243-1248.
Google Scholar
[11]
Z. Kozareva, E. Riloff, and E. H. Hovy, Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs, in Proceedings of the 46nd Annual Meeting on Association for Computational Linguistics, 2008, pp.1048-1056.
Google Scholar
[12]
T. He, J. Liu, and X. Zhou, Automatically Extracting Chinese Aliases of Products Based on Web Searching, in Coling 2012 Sixth Workshop on Analytics for Noisy Unstructured Text Data, (2012).
Google Scholar
[13]
J. Turian, L. Ratinov, and Y. Bengio, Word representations: a simple and general method for semi-supervised learning, in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 2010, pp.384-394.
Google Scholar
[14]
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, in Advances in Neural Information Processing Systems, 2013, pp.3111-3119.
Google Scholar
[15]
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, in In Proceedings of Workshop at ICLR, (2013).
Google Scholar