[1]
Li Peng, Wang Ruchan, Wu Ning. Research on Unknown Malicious Code Automatic Detection Based on Space Relevance Features. Journal of Computer Research and Development. 2012, 49(5): 949-957. (in Chinese).
Google Scholar
[2]
W. Li, S. Stolfo, A. Stavrou, E. Androulaki, A. Keromytis, A study of malcode-bearing documents, Detection of Intrusions and Malware, and Vulnerability Assessment 4579 (2007) 231–250.
DOI: 10.1007/978-3-540-73614-1_14
Google Scholar
[3]
Zhang Fu-yong, Qi De-yu, Hu Jing-lin. Embedded Malware Detection Based on C4. 5 Decision Tree. Journal of South China University of Technology (Natural Science Edition). 2011, 39(5): 68-72. (in Chinese).
Google Scholar
[4]
M. Christodorescu, S. Jha, S. Seshia, D. Song, R. Bryant, Semantics-aware malware detection, in: IEEE Symposium on Security and Privacy, (2005).
DOI: 10.1109/sp.2005.20
Google Scholar
[5]
S. Forrest, S. Hofmeyr, A. Somayaji, T. Longstaff, et al., A sense of self for Unix processes, in: IEEE Symposium on Security and Privacy, (1996).
DOI: 10.1109/secpri.1996.502675
Google Scholar
[6]
G. Casas-Garriga, P. Dıaz, J. Balcazar, ISSA: an integrated system for sequence analysis, Technical Report DELIS-TR-0103, Universitat Paderborn, (2005).
Google Scholar
[7]
D. Mutz, F. Valeur, C. Kruegel, G. Vigna, Anomalous system call detection, ACM Transactions on Information and System Security 9 (1) (2006) 61–93.
DOI: 10.1145/1127345.1127348
Google Scholar
[8]
X. Wang, W. Yu, A. Champion, X. Fu, D. Xuan, Detecting worms via mining dynamic program execution, in: Proceedings of the 3rd International Conference on Security and Privacy in Communication Networks and the Workshops, (2007).
DOI: 10.1109/seccom.2007.4550362
Google Scholar
[9]
Y. Wang, D. Beck, B. Vo, R. Roussev, C. Verbowski, A. Johnson, Detecting stealth software with strider ghostbuster, in: Proceedings of the International Conference on Dependable Systems and Networks Table of Contents, (2005).
DOI: 10.1109/dsn.2005.39
Google Scholar
[10]
Zhang Fu-yong, Qi De-yu, Hu Jing-lin. Run-Time Malware Detection Based on IRP. Journal of South China University of Technology (Natural Science Edition). 2011, 39(2): 113-117. (in Chinese).
Google Scholar
[11]
Zhang Fu-yong, Qi De-yu, Hu Jing-lin. MBMAS: a system for malware behavior monitor and analysis [C]/ Proceedings of International Symposium on Computer Network and Multimedia Technology, Wuhan, 2009: 1-4.
DOI: 10.1109/cnmt.2009.5374613
Google Scholar