Poly(vinylidene fluoride) (PVDF) Membrane Preparation with an Ionic Liquid via Thermally Induced Phase Separation Melt Technology

Article Preview

Abstract:

Poly(vinylidene fluoride) (PVDF)/1-butyl-2,3-dimethylimidazolium Tetrafluoroborate ([BMMIm][BF4]) flat sheet membranes were made via thermally induced phase separation (TIPS) melt technology, and [BMMIm][BF4]) was used as a diluent. The prepared membranes were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) and etc. Furthermore, [BMMIm][BF4] as a liquid-diluent was effectively recovered by vacuum distillation. In conclusion, this work may provide a green and sustainable preparation method to produce PVDF membranes via TIPS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-465

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.D. Kang, Y. m. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review, Journal of Membrane Science, 463(2014)145-165.

DOI: 10.1016/j.memsci.2014.03.055

Google Scholar

[2] H.Q. Liang, Q.Y. Wu, L.S. Wan, X.J. Huang, Z.K. Xu, Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent, Journal of Membrane Science, 446(2013)482-491.

DOI: 10.1016/j.memsci.2013.07.008

Google Scholar

[3] Ji GL, Zhu LP, Zhu BK, Zhang CF, Xu YY. Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. Journal of Membrane Science, 319(2008) 264-270.

DOI: 10.1016/j.memsci.2008.03.043

Google Scholar

[4] J. A. Yang, X. L. Wang, Y. Tian, Y. K. Lin, F. Tian. Morphologies and crystalline forms of polyvinylidene fluoride membranes prepared in different diluents by thermally induced phase separation. J Polym Sci Pt B-Polym Phys. 48(2010)2468-75.

DOI: 10.1002/polb.22145

Google Scholar

[5] R.D. Noble, D.L. Gin, Perspective on ionic liquids and ionic liquid membranes, Journal of Membrane Science, 369(2011)1-4.

DOI: 10.1016/j.memsci.2010.11.075

Google Scholar

[6] A. Dahi, K. Fatyeyeva, D. Langevin, C. Chappey, S. P. Rogalsky, O.P. Tarasyuk, A. Benamor, S. Marais, Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties, Journal of Membrane Science, 458(2014).

DOI: 10.1016/j.memsci.2014.01.031

Google Scholar

[7] Earle M J, Esperanca J M, Gilea M A. The distillation and volatility of ionic liquids. Nature, 439(2006)831-834.

Google Scholar

[8] V.R. Ferro, E. Ruiz, J. de Riva, J. Palomar, Introducing process simulation in ionic liquids design/selection for separation processes based on operational and economic criteria through the example of their regeneration, Separation and Purification Technology, 97(2012).

DOI: 10.1016/j.seppur.2012.02.026

Google Scholar

[9] N.S. Brisinski, O. Höfft, F. Endres, Plasma electrochemistry in ionic liquids: from silver to silicon nanoparticles, Journal of Molecular Liquids, 192(2014)59-66.

DOI: 10.1016/j.molliq.2013.09.017

Google Scholar

[10] T. Selvam, A. Machoke, W. Schwieger, Supported ionic liquids on non-porous and porous inorganic materials—A topical review, Applied Catalysis A: General, 445–446(2012) 92-101.

DOI: 10.1016/j.apcata.2012.08.007

Google Scholar

[11] F.M. Shi, Y.X. Ma, J. Ma, P.P. Wang, W.X. Sun, Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2, Journal of Membrane Science, 389(2012)522-531.

DOI: 10.1016/j.memsci.2011.11.022

Google Scholar