[1]
Y.J. Gu, F.N. Han, Synthesis and research of CeO2-V2O5/ATP for selective catalytic reduction of NOx in flue gas at low temperature, Procedia Environ Sci. 18 (2013) 412-417.
DOI: 10.1016/j.proenv.2013.04.055
Google Scholar
[2]
A. Fritz, V. Pitchon, The current state of research on automotive lean NOx catalysis, Appl Catal B-Environ. 13 (1997) 1-25.
DOI: 10.1016/s0926-3373(96)00102-6
Google Scholar
[3]
H.D. Xu, Z.T. Fang, Y. Cao, Influence of Mn/(Mn+Ce) Ratio of MnOX-CeO2/WO3-ZrO2 Monolith Catalyst on Selective Catalytic Reduction of NOx with Ammonia, Chinese J Catal. 33 (2012) 1927-1937.
DOI: 10.1016/s1872-2067(11)60467-1
Google Scholar
[4]
G. Qi, R.T. Yang, R. Chang, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Appl Catal B-Environ.51 (2004) 93-106.
DOI: 10.1016/j.apcatb.2004.01.023
Google Scholar
[5]
F. Gao, Z. Chen, P. Wang, Disquisition on the Techniques for Oxynitrides Control in Coal-fire Process, Guang Zhou Environ Sci. 22(2007) 19-22. [In Chinese].
Google Scholar
[6]
C.K. Seo, B. Choi, H. Kim, Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst, Chem Eng J. 191 (2012) 331-340.
DOI: 10.1016/j.cej.2012.03.027
Google Scholar
[7]
S.M. Park, M. Kim, E.S. Kim, H. Han, G. Seo, H2-SCR of NO on Pt-MnOx catalysts: Reaction path via NH3 formation, Appl Catal A-Gen. 395 (2011) 120-128.
DOI: 10.1016/j.apcata.2011.01.033
Google Scholar
[8]
V. Lilian, T. Christodoulos, A novel highly selective and stable Ag/MgO-CeO2-Al2O3catalyst for the low-temperature ethanol-SCR of NO, Appl Catal B-Environ.107 (2011) 164-176.
DOI: 10.1016/j.apcatb.2011.07.010
Google Scholar
[9]
F. Aurélien, C. Fabien, C. Xavier, High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol, Appl Catal B-Environ. 126 (2012) 275-289.
DOI: 10.1016/j.apcatb.2012.07.006
Google Scholar
[10]
A.R. Vaccaro, G. Mul, On the activation of Pt/Al2O3catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack, Appl Catal B-Environ. 46 (2003) 687-702.
DOI: 10.1016/s0926-3373(03)00271-6
Google Scholar
[11]
M.J. Seong, G. Paul, Characterization and reactivity of V2O5-WO3 supported on TiO2-SO42- catalyst for the SCR reaction, Appl Catal B-Environ. 32 (2001) 123-131.
DOI: 10.1016/s0926-3373(01)00123-0
Google Scholar
[12]
R.Q. Long, R.T. Yang, Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts, Appl Catal B-Environ. 24 (2000) 13-21.
DOI: 10.1016/s0926-3373(99)00092-2
Google Scholar
[13]
W.C. Yu, W.D. Wu, Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst, Appl Surf Sci. 283 (2013) 209-214.
DOI: 10.1016/j.apsusc.2013.06.083
Google Scholar
[14]
G. Ioanna, F. Christina, Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3:In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. J Catal. 239 (2006) 1-12.
DOI: 10.1016/j.jcat.2006.01.019
Google Scholar
[15]
S.S. Grzegorz, G. Teresa, Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3, Catal Today. 90 (2004) 51-59.
DOI: 10.1016/j.cattod.2004.04.008
Google Scholar
[16]
A. Boyano, M.J. Lázaro, A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3, Chem Eng J. 149 (2009) 173-182.
DOI: 10.1016/j.cej.2008.10.022
Google Scholar
[17]
X. Gao, S.J. Liu, Y. Zhang, Low temperature selective catalytic reduction of NO and NO2 with NH3 over activated carbon-supported vanadium oxide catalyst, Catal Today. 175 (2011) 164-170.
DOI: 10.1016/j.cattod.2011.03.058
Google Scholar
[18]
L.Y. Hsu, H. Teng, Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies, Appl Catal B-Environ. 35 (2001) 21-30.
DOI: 10.1016/s0926-3373(01)00228-4
Google Scholar
[19]
J. Pasel, P. KaÈûner, B. Montanari, Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3, Appl Catal B-Environ. 18 (1998) 199-213.
DOI: 10.1016/s0926-3373(98)00033-2
Google Scholar
[20]
Y.L. Wang, Z.Y. Liu. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal, Chem Eng Sci. 59 (2004) 5283-5290.
Google Scholar
[21]
N. Shirahama, I. Mochida, Y Korai, Reaction of NO with urea supported on activated carbons, Appl Catal B-Environ. 57 (2005) 237-245.
DOI: 10.1016/j.apcatb.2004.04.004
Google Scholar
[22]
Z.P. Zhu, Z.Y. Liu, Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: effect of metal oxides addition and SO2, Appl Catal B-Environ. 30 (2001) 267-276.
DOI: 10.1016/s0926-3373(00)00239-3
Google Scholar
[23]
Z.G. Huang, Z.P. Zhu, Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Appl Catal B-Environ. 39 (2002) 361-368.
DOI: 10.1016/s0926-3373(02)00122-4
Google Scholar
[24]
Q. Li, X. Hou, H.S. Yang, Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites, J Mol Catal A-Chem. 356 (2012) 121-127.
DOI: 10.1016/j.molcata.2012.01.004
Google Scholar
[25]
L.S. Wang, B.C. Huang, Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization, Chem Eng J. 192 (2012) 232-241.
DOI: 10.1016/j.cej.2012.04.012
Google Scholar
[26]
X.Y. Fan, F.M. Liu, Selective catalytic reduction of NOx with ammonia over Mn–Ce–Ox/TiO2-carbon nanotube composites, Catal Commun. 12 (2011) 1298-1301.
DOI: 10.1016/j.catcom.2011.05.011
Google Scholar
[27]
X.B. Chen, S. Gao, Selective catalytic reduction of NO over carbon nanotubes supported CeO2, Catal Commun. 14 (2011) 1-5.
Google Scholar
[28]
B.C. Huang, R. Huang, D.J. Jin, Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides, Catal Today. 126 (2007) 279-283.
DOI: 10.1016/j.cattod.2007.06.002
Google Scholar
[29]
Q. Li, H.S. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J Hazard Mater. 192 (2011) 915-921.
DOI: 10.1016/j.jhazmat.2011.05.101
Google Scholar
[30]
S.L. Bai, J.H. Zhao, Study of low-temperature selective catalytic reduction of NO by ammonia over carbon-nanotube-supported vanadium, J Fuel Chem Tech. 37 (2009) 583-587. [In Chinese].
DOI: 10.1016/s1872-5813(10)60010-2
Google Scholar
[31]
S.L. Bai, J.H. Zhao, SO2-promoted carbon nanotubes supported vanadia catalyst for NO reduction with ammonia at low temperature, New Chem Mater. 37 (2009) 23-25.
Google Scholar
[32]
D.K. Sun, Z.Y. Liu, G.Q. Gui, Reaction of NO and NO2 with NH3 over V2O5/AC Catalyst, Chinese J Catal. 31 (2010) 56-60. [In Chinese].
Google Scholar
[33]
J.R. Ma, Z.Y. Liu, Z.G. Huang, Adsorption and Oxidation of NH3 over V2O5/AC Catalyst, Chinese J Catal. 27 (2006) 91-96. [In Chinese].
Google Scholar
[34]
Y. Xiao, Z.Y. Liu, Q.Y. Liu, Mechanism of SO2 Influence on NO Removal over V2O5/AC Catalyst, Chinese J Catal. 29 (2008) 81-85. [In Chinese].
Google Scholar