Experimental Research on Catalysts of V2O5/AC and V2O5/CNTs for Low Temperature SCR Denitrification

Article Preview

Abstract:

Two catalysts (V2O5/AC and V2O5/CNTs) with different loadings, prepared by impregnation method, were used to research the DeNOx activity under N2 and CO2 atmospheres respecitively at the temperature range from 100°C to 300°C using a fixed bed reactor. Effects of temperature, loading and support on the DeNOx activity were studied. The results show that the NO conversion of the both catalysts increases with the reaction temperature. The loading and support have significant effects on the activities. 9%V2O5/AC and 9%V2O5/CNTs yielded 80% and 66.6% NO conversion at 250°C respectively under N2 atmosphere, however, they yielded 78.1% and 75.1% respectively under CO2 atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

478-483

Citation:

Online since:

November 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.J. Gu, F.N. Han, Synthesis and research of CeO2-V2O5/ATP for selective catalytic reduction of NOx in flue gas at low temperature, Procedia Environ Sci. 18 (2013) 412-417.

DOI: 10.1016/j.proenv.2013.04.055

Google Scholar

[2] A. Fritz, V. Pitchon, The current state of research on automotive lean NOx catalysis, Appl Catal B-Environ. 13 (1997) 1-25.

DOI: 10.1016/s0926-3373(96)00102-6

Google Scholar

[3] H.D. Xu, Z.T. Fang, Y. Cao, Influence of Mn/(Mn+Ce) Ratio of MnOX-CeO2/WO3-ZrO2 Monolith Catalyst on Selective Catalytic Reduction of NOx with Ammonia, Chinese J Catal. 33 (2012) 1927-1937.

DOI: 10.1016/s1872-2067(11)60467-1

Google Scholar

[4] G. Qi, R.T. Yang, R. Chang, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Appl Catal B-Environ.51 (2004) 93-106.

DOI: 10.1016/j.apcatb.2004.01.023

Google Scholar

[5] F. Gao, Z. Chen, P. Wang, Disquisition on the Techniques for Oxynitrides Control in Coal-fire Process, Guang Zhou Environ Sci. 22(2007) 19-22. [In Chinese].

Google Scholar

[6] C.K. Seo, B. Choi, H. Kim, Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst, Chem Eng J. 191 (2012) 331-340.

DOI: 10.1016/j.cej.2012.03.027

Google Scholar

[7] S.M. Park, M. Kim, E.S. Kim, H. Han, G. Seo, H2-SCR of NO on Pt-MnOx catalysts: Reaction path via NH3 formation, Appl Catal A-Gen. 395 (2011) 120-128.

DOI: 10.1016/j.apcata.2011.01.033

Google Scholar

[8] V. Lilian, T. Christodoulos, A novel highly selective and stable Ag/MgO-CeO2-Al2O3catalyst for the low-temperature ethanol-SCR of NO, Appl Catal B-Environ.107 (2011) 164-176.

DOI: 10.1016/j.apcatb.2011.07.010

Google Scholar

[9] F. Aurélien, C. Fabien, C. Xavier, High-surface-area zinc aluminate supported silver catalysts for low-temperature SCR of NO with ethanol, Appl Catal B-Environ. 126 (2012) 275-289.

DOI: 10.1016/j.apcatb.2012.07.006

Google Scholar

[10] A.R. Vaccaro, G. Mul, On the activation of Pt/Al2O3catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack, Appl Catal B-Environ. 46 (2003) 687-702.

DOI: 10.1016/s0926-3373(03)00271-6

Google Scholar

[11] M.J. Seong, G. Paul, Characterization and reactivity of V2O5-WO3 supported on TiO2-SO42- catalyst for the SCR reaction, Appl Catal B-Environ. 32 (2001) 123-131.

DOI: 10.1016/s0926-3373(01)00123-0

Google Scholar

[12] R.Q. Long, R.T. Yang, Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts, Appl Catal B-Environ. 24 (2000) 13-21.

DOI: 10.1016/s0926-3373(99)00092-2

Google Scholar

[13] W.C. Yu, W.D. Wu, Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst, Appl Surf Sci. 283 (2013) 209-214.

DOI: 10.1016/j.apsusc.2013.06.083

Google Scholar

[14] G. Ioanna, F. Christina, Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3:In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. J Catal. 239 (2006) 1-12.

DOI: 10.1016/j.jcat.2006.01.019

Google Scholar

[15] S.S. Grzegorz, G. Teresa, Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3, Catal Today. 90 (2004) 51-59.

DOI: 10.1016/j.cattod.2004.04.008

Google Scholar

[16] A. Boyano, M.J. Lázaro, A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3, Chem Eng J. 149 (2009) 173-182.

DOI: 10.1016/j.cej.2008.10.022

Google Scholar

[17] X. Gao, S.J. Liu, Y. Zhang, Low temperature selective catalytic reduction of NO and NO2 with NH3 over activated carbon-supported vanadium oxide catalyst, Catal Today. 175 (2011) 164-170.

DOI: 10.1016/j.cattod.2011.03.058

Google Scholar

[18] L.Y. Hsu, H. Teng, Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies, Appl Catal B-Environ. 35 (2001) 21-30.

DOI: 10.1016/s0926-3373(01)00228-4

Google Scholar

[19] J. Pasel, P. KaÈûner, B. Montanari, Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3, Appl Catal B-Environ. 18 (1998) 199-213.

DOI: 10.1016/s0926-3373(98)00033-2

Google Scholar

[20] Y.L. Wang, Z.Y. Liu. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal, Chem Eng Sci. 59 (2004) 5283-5290.

Google Scholar

[21] N. Shirahama, I. Mochida, Y Korai, Reaction of NO with urea supported on activated carbons, Appl Catal B-Environ. 57 (2005) 237-245.

DOI: 10.1016/j.apcatb.2004.04.004

Google Scholar

[22] Z.P. Zhu, Z.Y. Liu, Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: effect of metal oxides addition and SO2, Appl Catal B-Environ. 30 (2001) 267-276.

DOI: 10.1016/s0926-3373(00)00239-3

Google Scholar

[23] Z.G. Huang, Z.P. Zhu, Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Appl Catal B-Environ. 39 (2002) 361-368.

DOI: 10.1016/s0926-3373(02)00122-4

Google Scholar

[24] Q. Li, X. Hou, H.S. Yang, Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites, J Mol Catal A-Chem. 356 (2012) 121-127.

DOI: 10.1016/j.molcata.2012.01.004

Google Scholar

[25] L.S. Wang, B.C. Huang, Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization, Chem Eng J. 192 (2012) 232-241.

DOI: 10.1016/j.cej.2012.04.012

Google Scholar

[26] X.Y. Fan, F.M. Liu, Selective catalytic reduction of NOx with ammonia over Mn–Ce–Ox/TiO2-carbon nanotube composites, Catal Commun. 12 (2011) 1298-1301.

DOI: 10.1016/j.catcom.2011.05.011

Google Scholar

[27] X.B. Chen, S. Gao, Selective catalytic reduction of NO over carbon nanotubes supported CeO2, Catal Commun. 14 (2011) 1-5.

Google Scholar

[28] B.C. Huang, R. Huang, D.J. Jin, Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides, Catal Today. 126 (2007) 279-283.

DOI: 10.1016/j.cattod.2007.06.002

Google Scholar

[29] Q. Li, H.S. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J Hazard Mater. 192 (2011) 915-921.

DOI: 10.1016/j.jhazmat.2011.05.101

Google Scholar

[30] S.L. Bai, J.H. Zhao, Study of low-temperature selective catalytic reduction of NO by ammonia over carbon-nanotube-supported vanadium, J Fuel Chem Tech. 37 (2009) 583-587. [In Chinese].

DOI: 10.1016/s1872-5813(10)60010-2

Google Scholar

[31] S.L. Bai, J.H. Zhao, SO2-promoted carbon nanotubes supported vanadia catalyst for NO reduction with ammonia at low temperature, New Chem Mater. 37 (2009) 23-25.

Google Scholar

[32] D.K. Sun, Z.Y. Liu, G.Q. Gui, Reaction of NO and NO2 with NH3 over V2O5/AC Catalyst, Chinese J Catal. 31 (2010) 56-60. [In Chinese].

Google Scholar

[33] J.R. Ma, Z.Y. Liu, Z.G. Huang, Adsorption and Oxidation of NH3 over V2O5/AC Catalyst, Chinese J Catal. 27 (2006) 91-96. [In Chinese].

Google Scholar

[34] Y. Xiao, Z.Y. Liu, Q.Y. Liu, Mechanism of SO2 Influence on NO Removal over V2O5/AC Catalyst, Chinese J Catal. 29 (2008) 81-85. [In Chinese].

Google Scholar