Evaluation of PCL/GE-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application

Article Preview

Abstract:

Scaffold provides a suitable medium for cell growing and drug delivery while enhancing the cell transplantation efficiency. In this project, nanofibrous scaffolds were fabricated through electrospinning of Polycaprolactone (PCL) and Gelatin (GE). Processing parameters and solution parameters were optimized to achieve the desired properties of PCL/GE nanofibers. Scanning Electron Microscopy (SEM), water contact angle and Attenuated Total Reflectance–Fourier Transformed Infrared Spectroscopy (ATR-FTIR) were implemented to characterize the fabricated nanofibers. It was found that 14% w/v PCL/GE shows the best fibers’ diameter, pore size, contact angle and less bead formation. This sample is suitable to be further investigated for the application of tissue engineering (TE) and drug delivery system (DDS).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-335

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.M. Peter, J. Elisseeff, Scaffolding In Tissue Engineering, first ed., CRC Press, United State, (2005).

Google Scholar

[2] J.A. Fishman, R.H. Rubin, Infection in Organ-Transplant Recipients, New England Journal of Medicine. 338 (1998) 1741-1751.

DOI: 10.1056/nejm199806113382407

Google Scholar

[3] N. Sultana and T. H. Khan: Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA) and Poly(hydroxybutyrate-co-hydroxyvalerate-) Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films. J Nanomater, vol. 2013, Article ID 479109, pp.1-8 (2013).

DOI: 10.1155/2013/479109

Google Scholar

[4] J. Venugopal, S. Low, T.C. Aw, S. Ramakrishna, Interaction of Cells and Nanofiber Scaffolds in Tissue Engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterial. 84B (2008) 34-48.

DOI: 10.1002/jbm.b.30841

Google Scholar

[5] R. Sinha, G.J. Kim, S. Nie, D.M. Shin, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Molecular Cancer Therapeutics. 8 (2006) 1909-(1917).

DOI: 10.1158/1535-7163.mct-06-0141

Google Scholar

[6] S. Gautam, A.K. Dinda, N.C. Mishra, Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method, Materials Science and Engineering. 3 (2013) 1228-1235.

DOI: 10.1016/j.msec.2012.12.015

Google Scholar

[7] L.H. Chong, M.M. Lim, N. Sultana, Polycaprolactone(PCL)/Gelatin(Ge)-based Electrospun Nanofibers for Tissue engineering and Drug Delivery Application, Applied Mechanics and Materials. 554 (2014) 57-61.

DOI: 10.4028/www.scientific.net/amm.554.57

Google Scholar

[8] S. Agarwal, J.H. Wendorff, A. Greiner, Progress in the field of electrospinning for tissue engineering applications, Advance Materials. 21 (2009) 43-51.

Google Scholar

[9] M.P. Bajgai, S. Aryal, S.R. Bhattarai, K.C.R. Bahadur, K.W. Kim, H.Y. Kim, Poly(e-caprolactone) grafted dextran biodegradable electrospun matrix: a novel scaffold for tissue engineering, J. Appl Polym Sci. 108 (2008) 1447-1454.

DOI: 10.1002/app.27825

Google Scholar

[10] Y. Zhu, Y. Cao, J. Pan, Y. Liu, Macro-alignment of electrospun fibers for vascular tissue engineering, J. Biomed. Mater. Res. Part B: Appl Biomater. 92B (2010) 508-516.

DOI: 10.1002/jbm.b.31544

Google Scholar

[11] D. Yixiang, T. Yong, S. Liao, C.K. Chan, S. Ramakrishna, Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering, Tissue Engineering. 14 (2008).

DOI: 10.1089/ten.tea.2007.0395

Google Scholar

[12] M.A. Alvarez-Perez, V. Guarino, V. Cirillo, L. Ambrosio, Influence of Gelatin Cues in PCL Electrospun Membranes on Nerve Outgrowth, Biomacromolecules. 11 (2010) 2238-2246.

DOI: 10.1021/bm100221h

Google Scholar

[13] E.J. Chong, T.T. Phan, I.J. Lim, Y.Z. Zhang, B.H. Bay, S. Ramakrishna, C.T. Lim, Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution, Acta Biomaterialia. 3 (2007) 321-330.

DOI: 10.1016/j.actbio.2007.01.002

Google Scholar

[14] M.M. Lim, N. Sultana, A. Yahya, Fabrication and Characterization of Polycaprolactone (PCL)/Gelatin Electrospun Fibers, Applied Mechanics and Materials. 554 (2014) 52-56.

DOI: 10.4028/www.scientific.net/amm.554.52

Google Scholar

[15] D. Kai, M.P. Prabhakaran, B. Stahl, M. Eblenkamp, E. Wintermantel, S. Ramakrishma, Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications, Nanotechnology. 23 (2012).

DOI: 10.1088/0957-4484/23/9/095705

Google Scholar

[16] D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, G. Fortunato, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres, European Polymer Journal. 49 (2013) 2052-(2061).

DOI: 10.1016/j.eurpolymj.2013.04.036

Google Scholar

[17] S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, MaterialsToday. 9(3) (2006) 40-50.

DOI: 10.1016/s1369-7021(06)71389-x

Google Scholar

[18] F. Roozbahani, N. Sultana, A. F. Ismail, and Hamed Nouparvar, Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application, Journal of Nanomaterials. 2013 (2013).

DOI: 10.1155/2013/641502

Google Scholar

[19] V.Y. Chakrapani, A. Gnanamani, V.R. Giridev, M. Madhusoothanan, G. Sekaran, Electrospinning of type 1 collagen and PCL nanofibers using acetic acid, Journal of Applied Polymer Science. 125 (2012) 3221-3227.

DOI: 10.1002/app.36504

Google Scholar