[1]
Amarasinghe, B. M. W. P. K., & Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal, 132, 299–309.
DOI: 10.1016/j.cej.2007.01.016
Google Scholar
[2]
Hydari, S., Sharififard, H., Nabavinia, M., & Parvizi, M. R. (2012).
Google Scholar
[3]
Bhatnagara, A. and Minocha, A. K. (2009). Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chemical Engineering Journal, 150: 145–151.
DOI: 10.1016/j.cej.2008.12.013
Google Scholar
[4]
WHO (2003). Iron in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. World Health Organization, Geneva. (WHO/SDE/WSH/03. 04/8).
Google Scholar
[5]
WHO (2006). Guidelines for Drinking-water Quality First Addendum To Third Edition, Volume 1. World Health Organization, Geneva.
Google Scholar
[6]
Department of Environment (2010). Malaysia Environmental Quality Report 2010. Ministry of Natural Resources and Environment, Malaysia.
Google Scholar
[7]
Fu, F. and Wang, Q (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92: 407-418.
DOI: 10.1016/j.jenvman.2010.11.011
Google Scholar
[8]
Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.
DOI: 10.1016/j.arabjc.2010.07.019
Google Scholar
[9]
Boujelben, N., Bouzid, J., and Elouear, Z. (2009). Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions : Study in single and binary systems. Journal of hazardous materials, 163, 376–382.
DOI: 10.1016/j.jhazmat.2008.06.128
Google Scholar
[10]
Vijayaraghavan, K., & Yun, Y. -S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–91.
DOI: 10.1016/j.biotechadv.2008.02.002
Google Scholar
[11]
Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.
DOI: 10.1002/jctb.1999
Google Scholar
[12]
Park, D., Yun, Y.S., and Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.
DOI: 10.1007/s12257-009-0199-4
Google Scholar
[13]
Khosravihaftkhany, S., Morad, N., Teng, T. T., Abdullah, A. Z., & Norli, I. (2013). Biosorption of Pb(II) and Fe(III) from Aqueous Solutions Using Oil Palm Biomasses as Adsorbents. Water, Air, & Soil Pollution, 224(3), 1455.
DOI: 10.1007/s11270-013-1455-y
Google Scholar
[14]
Tay, C. -C., Liew, H. -H., Redzwan, G., Yong, S. -K., Surif, S., & Abdul-Talib, S. (2011).
Google Scholar
[15]
Moghadam, M. R., Nasirizadeh, N., Dashti, Z., & Babanezhad, E. (2013). Removal of Fe ( II ) from aqueous solution using pomegranate peel carbon : equilibrium and kinetic studies. International Journal of Industrial Chemistry, 4(1), 1.
DOI: 10.1186/2228-5547-4-19
Google Scholar
[16]
Ngah, W. S. W., Ab Ghani, S., & Kamari, a. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443–50.
DOI: 10.1016/j.biortech.2004.05.022
Google Scholar
[17]
Ma, L., Peng, Y., Wu, B., Lei, D., & Xu, H. (2013). Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chemical Engineering Journal, 225, 59–67.
DOI: 10.1016/j.cej.2013.03.044
Google Scholar