Implementation of Ant Colony Optimization Algorithm to Minimize Cost of Turning Process

Article Preview

Abstract:

In machining process, turning is one of process that were significantly change by introduction of computer numerical control (CNC). However, the process improvement is not stopping there, but the focused has change to reduce the machining cost. Improper parameter selection will caused vibration in cutting, unsecure workpiece, unappealing finishing and cost consuming. Therefore, the optimum parameter setting is required because it related to certain quality characteristics such as the unit production cost. This paper presents the study to minimize production cost for CNC turning process by using Ant Colony Optimization (ACO). The result shows that, the ACO was capable to search for optimum production cost in shorter time compare to other methods, including Genetic Algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-561

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Vijayakumar, G. Prabhaharan, P. Asokan, and R. Saravanan, Optimization of multi-pass turning operations using ant colony system, Int. J. Mach. Tools Manuf., vol. 43, no. 15, p.1633–1639, Dec. (2003).

DOI: 10.1016/s0890-6955(03)00081-6

Google Scholar

[2] Y. -C. Wang, A note on 'optimization of multi-pass turning operations using ant colony system', Int. J. Mach. Tools Manuf., vol. 47, no. 12–13, p.2057–2059, Oct. (2007).

DOI: 10.1016/j.ijmachtools.2007.03.001

Google Scholar

[3] M. Sarıkaya and A. Güllü, Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL, J. Clean. Prod., vol. 65, p.604–616, Feb. (2014).

DOI: 10.1016/j.jclepro.2013.08.040

Google Scholar

[4] C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA, J. Clean. Prod., vol. 53, p.195–203, Aug. (2013).

DOI: 10.1016/j.jclepro.2013.03.049

Google Scholar

[5] A. R. Yildiz, Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations, Appl. Soft Comput., vol. 13, no. 3, p.1433–1439, Mar. (2013).

DOI: 10.1016/j.asoc.2012.01.012

Google Scholar

[6] İ. Asiltürk and S. Neşeli, Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis, Measurement, vol. 45, no. 4, p.785–794, May (2012).

DOI: 10.1016/j.measurement.2011.12.004

Google Scholar

[7] D. M. D'Addona and R. Teti, Genetic Algorithm-based Optimization of Cutting Parameters in Turning Processes, Procedia CIRP, vol. 7, p.323–328, Jan. (2013).

DOI: 10.1016/j.procir.2013.05.055

Google Scholar

[8] H. Marko, K. Simon, I. Tomaz, P. Matej, and B. Miran, Turning Parameters Optimization Using Particle Swarm Optimization, Procedia Eng., vol. 69, p.670–677, (2014).

DOI: 10.1016/j.proeng.2014.03.041

Google Scholar

[9] S. Satishkumar, P. Asokan, and S. Kumanan, Optimization of depth of cut in multi-pass turning using nontraditional optimization techniques, Int. J. Adv. Manuf. Technol., vol. 29, no. 3–4, p.230–238, Nov. (2005).

DOI: 10.1007/s00170-005-2526-z

Google Scholar

[10] R. Saravanan, Manufacturing Optimization through Intelligent Techniques. United Kingdom: Taylor & Francis, (2006).

Google Scholar

[11] S. van Egmond, Dynamic Ant Colony Optimization for the Traveling Salesman Problem, Leiden University, (2012).

Google Scholar

[12] M. Rashid, and S. Izwandi, Optimization of Turning Parameters to Minimize Production Cost using Genetic Algorithm, p.0–3, (2009).

Google Scholar