New Plasma Surface Processing Technology and its Application

Article Preview

Abstract:

Plasma surface processing technology can improve the mechanical properties, the corrosion resistance and chemical properties of the parts; therefore it has been widely used in industrial field. Advanced plasma surface processing technology is also constantly innovation, high power pulsed magnetron sputtering technique has been studied and explored by many scholars in recent years, and also gradually began to be used in the industry . This paper mainly introduces the study of HiPIMS dynamic and application over the past ten years. The HiPIMS discharge mechanism research method and theory is summarized .And the influence of the preparation process parameters about voltage, pressure, pulse width and frequency to compound film performance is systematically described, a detection method for thin film by HiPIMS is also introduced. These will provide guidance for the preparation of reactive HiPIMS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Huang, P. Yang, Y.X. Leng, et al, Hemocompatibility of titanium oxide films, Biomaterials. 24(2003)2177-2187.

DOI: 10.1016/s0142-9612(03)00046-2

Google Scholar

[2] Leng Y.X., Chen J.Y., Yang P. et al, The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve, Surface and Coatings Technology. 201(2006).

DOI: 10.1016/j.surfcoat.2006.01.024

Google Scholar

[3] B. Goranchev, V. Orlinov, and V. Popova. cathode sputtering: influence of the oxygen content in the gas flow on the discharge current, Thin Solid Films. 33(1976)173-183.

DOI: 10.1016/0040-6090(76)90078-x

Google Scholar

[4] H. Savaloni, A. Taherizadeh, A. Zendehnam. Residual Stress in Cu Sputtered Films on Glass Substrates at Different Substrate Temperatures Journal of Sciences, Islamic Republic of Iran 15(3) (2004) 277-282.

DOI: 10.1016/j.physb.2004.01.158

Google Scholar

[5] A. Rojo, J. Solı´s, J. Oseguera et al. Tribological Properties of CrN/AlN Films Produced by Reactive Magnetron Sputtering, Journal of Materials Engineering and Performance. 19(3) (2010) 421.

DOI: 10.1007/s11665-009-9508-5

Google Scholar

[6] Jens Emmerlich, Stanislav Mra´ z, Rony Snyders. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering, Vacuum 82 (2008) 867-870.

DOI: 10.1016/j.vacuum.2007.10.011

Google Scholar

[7] Helmersson U, Lattemann M, Bohlmark J. Review ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Film. 513 (1-2) (2006)1-24.

DOI: 10.1016/j.tsf.2006.03.033

Google Scholar

[8] Reinhard C, Ehiasarian A P, Hovsepian P E. CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pretreatment, Thin Solid Films. 515(7-8) (2007)3685-3692.

DOI: 10.1016/j.tsf.2006.11.014

Google Scholar

[9] Alami J, Eklund P, Emmerlich J, High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target, Thin Solid Films. 515(4) (2006)1731-1736.

DOI: 10.1016/j.tsf.2006.06.015

Google Scholar

[10] In J H, Seo S H, Chang H Y, A novel pulsing method for the enhancement of the deposition rate in high power pulsed magnetron sputtering Surface and Coatings Technology., 202(22-23) (2008) 5298-5301.

DOI: 10.1016/j.surfcoat.2008.06.141

Google Scholar

[11] Ehiasarian A P, Wen J G, Petrov J, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, Journal of Applied Physics. 101(5) (2007) 054301.

DOI: 10.1063/1.2697052

Google Scholar

[12] Dirk Ochs, HIPIMS Power for Improved Thin Film Coatings, Vakuum in Forschung und Praxis. 20 Nr. 4 (2008) 34-38.

DOI: 10.1002/vipr.200800362

Google Scholar

[13] Information on http: /www. hauzer. cn.

Google Scholar

[14] Kouznetsov V, Maca K, Schneider J M, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and CoatingsTechnology. 122(2-3) (1999) 290-293.

DOI: 10.1016/s0257-8972(99)00292-3

Google Scholar

[15] Sarakinos K, Alami J, Konstantinidis S, High power pulsed magnetron sputtering: a review on scientific and engineering state of the art, Surface and Coatings Technology. 204(2010) 1661–1684.

DOI: 10.1016/j.surfcoat.2009.11.013

Google Scholar

[16] J. Alami, P. Eklund, J.M. Andersson, et al, Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering, Thin Solid Films. 515 (2007) 3434-3438.

DOI: 10.1016/j.tsf.2006.10.013

Google Scholar

[17] Arutiun P. Ehiasarian, High-power impulse magnetron sputtering and its applications, Pure Appl. Chem. 82(2010)1247-1258.

DOI: 10.1351/pac-con-09-10-43

Google Scholar

[18] W. -D. Münz, HIPIMS: The New PVD Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ( 2008 ) 27-32.

Google Scholar

[19] André Anders, Discharge physics of high power impulse magnetron sputtering Surface & Coatings Technology. 205 (2011) S1-S9.

DOI: 10.1016/j.surfcoat.2011.03.081

Google Scholar

[20] André Anders, Joakim Andersson, Arutiun Ehiasarian, High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering, JOURNAL OF APPLIED PHYSICS. 102(2007)113-303.

DOI: 10.1063/1.2817812

Google Scholar

[21] Ken Yukimura , Ryosuke Mieda , Kingo Azuma et al. Voltage–current characteristics of a high-power pulsed sputtering (HPPS)glow discharge and plasma density estimation, Nuclear Instruments and Methods in Physics Research B. 267 (2009)1692–1695.

DOI: 10.1016/j.nimb.2009.01.106

Google Scholar

[22] Satoshi Watanabe, Takeshi Tanaka, Toshinori Takagi et al, Estimation of plasma density in after-glow region of RF burst plasma based on voltage–current characteristics, Surface & Coatings Technology. 186 (2004)53-56.

DOI: 10.1016/j.surfcoat.2004.04.009

Google Scholar

[23] K. Yukimura, R. Mieda , H. Tamagaki et al, Electrical characteristics of arc-free high-power pulsed sputtering glow plasma, Surface & Coatings Technology. 202 (2008)5246-5250.

DOI: 10.1016/j.surfcoat.2008.06.021

Google Scholar

[24] Scott Kirkpatrick, Anomalous Current and Voltage Fluctuations in high Power Impulse Magnetron Sputtering, UMI Microform 3365710(2009). 1-280.

Google Scholar

[25] TIAN Xiu-bo, WU Zhong-zhen, SHI Jing-wei, et al, Development and discharge behavior of high power density pulse magnetron sputtering system, VACUUM. 47 (2010) 44-47.

Google Scholar

[26] MU Zongxin, WANG Chun, JIA Li, et al, Study of discharge properties and parameters of high power pulsed unbalanced magnetron sputtering, Nuclear Fusion and Plasma Physics. 30(2010) 365-368.

Google Scholar

[27] MichaelA. Lieberman, Allan J. Lichtenberg, Principles of Plasma Discharges and Material Processing, second ed., wiley, Berkeley, (1994).

Google Scholar

[28] H. Klostermann , F. Fietzke, R. Labitzke, et al, Zr–Nb–N hard coatings deposited by high power pulsed sputtering using different pulse modes, Surface & Coatings Technology. 204 (2009) 1076–1080.

DOI: 10.1016/j.surfcoat.2009.09.012

Google Scholar

[29] A. P. Ehiasarian, J. G. Wen ,I. Petrov, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, JOURNAL OF APPLIED PHYSICS. 101(2007) 054301.

DOI: 10.1063/1.2697052

Google Scholar

[30] F.J. Jing, T.L. Yin, K. Yukimura et al, Titanium film deposition by high-power impulse magnetron sputtering: Influence of pulse duration , Vacuum. 86 (2012)2114-2119.

DOI: 10.1016/j.vacuum.2012.06.003

Google Scholar

[31] Tai-Lei Yin, Feng-Juan Jing, Hong Sun et al, Microstructure and Platelet Adhesion Behavior of Titanium Oxide Films Synthesized by Reactive High-Power Pulse Magnetron Sputtering, IEEE TRANSACTIONS ON PLASMA SCIENCE. 41( 2013) 1837-1842.

DOI: 10.1109/tps.2013.2250528

Google Scholar

[32] M. Audronis, V. Bellido-Gonzalez, Hysteresis behaviour of reactive high power impulse magnetron sputtering, Thin Solid Films. 518 (2010) 1962–(1965).

DOI: 10.1016/j.tsf.2009.12.011

Google Scholar

[33] F. Horstmann, V. Sittinger, B. Szyszka, Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering, Thin Solid Films. 517 (2009) 3178-3182.

DOI: 10.1016/j.tsf.2008.11.092

Google Scholar

[34] A.P. Ehiasarian, W. -D. Munz, L. Hultman, et al, High power pulsed magnetron sputtered CrNx films, Surface and Coatings Technology. 163-164 (2003) 267-272.

DOI: 10.1016/s0257-8972(02)00479-6

Google Scholar

[35] M. Fenker , H. Kappl, K. Petrikowski, et al, Pulsed power magnetron sputtering of a niobium target in reactive oxygen and/or nitrogen atmosphere, Surface & Coatings Technology. 200 (2005) 1356-1360.

DOI: 10.1016/j.surfcoat.2005.08.074

Google Scholar

[36] K. Bobzin , N. Bagcivan , P. Immich et al, Mechanical properties and oxidation behaviour of (Al, Cr)N and (Al, Cr, Si)N coatings for cutting tools deposited by HPPMS, Thin Solid Films. 517 (2008) 1251-1256.

DOI: 10.1016/j.tsf.2008.06.050

Google Scholar

[37] A. Guillaumot, F. Lapostolle, C. Dublanche-Tixier, et al, Reactive deposition of AleN coatings in Ar/N2 atmospheres using pulsed-DC or high power impulse magnetron sputtering discharges Vacuum. (2010)1-6.

DOI: 10.1016/j.vacuum.2010.04.012

Google Scholar

[38] J. Paulitsch , M. Schenkel , Th. Zufras , et al, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films. 518 (2010)5558-5564.

DOI: 10.1016/j.tsf.2010.05.062

Google Scholar

[39] Jin-Hyo Boo, UHeon Kyu Park, Kyung Hoon Nam, et al, High rate deposition of poly-Si thin films at low temperature using a new designed magnetron sputtering source, Surface and Coatings Technology. 131 (2000) 211-215.

DOI: 10.1016/s0257-8972(00)00827-6

Google Scholar