[1]
N. Huang, P. Yang, Y.X. Leng, et al, Hemocompatibility of titanium oxide films, Biomaterials. 24(2003)2177-2187.
DOI: 10.1016/s0142-9612(03)00046-2
Google Scholar
[2]
Leng Y.X., Chen J.Y., Yang P. et al, The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve, Surface and Coatings Technology. 201(2006).
DOI: 10.1016/j.surfcoat.2006.01.024
Google Scholar
[3]
B. Goranchev, V. Orlinov, and V. Popova. cathode sputtering: influence of the oxygen content in the gas flow on the discharge current, Thin Solid Films. 33(1976)173-183.
DOI: 10.1016/0040-6090(76)90078-x
Google Scholar
[4]
H. Savaloni, A. Taherizadeh, A. Zendehnam. Residual Stress in Cu Sputtered Films on Glass Substrates at Different Substrate Temperatures Journal of Sciences, Islamic Republic of Iran 15(3) (2004) 277-282.
DOI: 10.1016/j.physb.2004.01.158
Google Scholar
[5]
A. Rojo, J. Solı´s, J. Oseguera et al. Tribological Properties of CrN/AlN Films Produced by Reactive Magnetron Sputtering, Journal of Materials Engineering and Performance. 19(3) (2010) 421.
DOI: 10.1007/s11665-009-9508-5
Google Scholar
[6]
Jens Emmerlich, Stanislav Mra´ z, Rony Snyders. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering, Vacuum 82 (2008) 867-870.
DOI: 10.1016/j.vacuum.2007.10.011
Google Scholar
[7]
Helmersson U, Lattemann M, Bohlmark J. Review ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Film. 513 (1-2) (2006)1-24.
DOI: 10.1016/j.tsf.2006.03.033
Google Scholar
[8]
Reinhard C, Ehiasarian A P, Hovsepian P E. CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pretreatment, Thin Solid Films. 515(7-8) (2007)3685-3692.
DOI: 10.1016/j.tsf.2006.11.014
Google Scholar
[9]
Alami J, Eklund P, Emmerlich J, High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target, Thin Solid Films. 515(4) (2006)1731-1736.
DOI: 10.1016/j.tsf.2006.06.015
Google Scholar
[10]
In J H, Seo S H, Chang H Y, A novel pulsing method for the enhancement of the deposition rate in high power pulsed magnetron sputtering Surface and Coatings Technology., 202(22-23) (2008) 5298-5301.
DOI: 10.1016/j.surfcoat.2008.06.141
Google Scholar
[11]
Ehiasarian A P, Wen J G, Petrov J, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, Journal of Applied Physics. 101(5) (2007) 054301.
DOI: 10.1063/1.2697052
Google Scholar
[12]
Dirk Ochs, HIPIMS Power for Improved Thin Film Coatings, Vakuum in Forschung und Praxis. 20 Nr. 4 (2008) 34-38.
DOI: 10.1002/vipr.200800362
Google Scholar
[13]
Information on http: /www. hauzer. cn.
Google Scholar
[14]
Kouznetsov V, Maca K, Schneider J M, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and CoatingsTechnology. 122(2-3) (1999) 290-293.
DOI: 10.1016/s0257-8972(99)00292-3
Google Scholar
[15]
Sarakinos K, Alami J, Konstantinidis S, High power pulsed magnetron sputtering: a review on scientific and engineering state of the art, Surface and Coatings Technology. 204(2010) 1661–1684.
DOI: 10.1016/j.surfcoat.2009.11.013
Google Scholar
[16]
J. Alami, P. Eklund, J.M. Andersson, et al, Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering, Thin Solid Films. 515 (2007) 3434-3438.
DOI: 10.1016/j.tsf.2006.10.013
Google Scholar
[17]
Arutiun P. Ehiasarian, High-power impulse magnetron sputtering and its applications, Pure Appl. Chem. 82(2010)1247-1258.
DOI: 10.1351/pac-con-09-10-43
Google Scholar
[18]
W. -D. Münz, HIPIMS: The New PVD Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ( 2008 ) 27-32.
Google Scholar
[19]
André Anders, Discharge physics of high power impulse magnetron sputtering Surface & Coatings Technology. 205 (2011) S1-S9.
DOI: 10.1016/j.surfcoat.2011.03.081
Google Scholar
[20]
André Anders, Joakim Andersson, Arutiun Ehiasarian, High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering, JOURNAL OF APPLIED PHYSICS. 102(2007)113-303.
DOI: 10.1063/1.2817812
Google Scholar
[21]
Ken Yukimura , Ryosuke Mieda , Kingo Azuma et al. Voltage–current characteristics of a high-power pulsed sputtering (HPPS)glow discharge and plasma density estimation, Nuclear Instruments and Methods in Physics Research B. 267 (2009)1692–1695.
DOI: 10.1016/j.nimb.2009.01.106
Google Scholar
[22]
Satoshi Watanabe, Takeshi Tanaka, Toshinori Takagi et al, Estimation of plasma density in after-glow region of RF burst plasma based on voltage–current characteristics, Surface & Coatings Technology. 186 (2004)53-56.
DOI: 10.1016/j.surfcoat.2004.04.009
Google Scholar
[23]
K. Yukimura, R. Mieda , H. Tamagaki et al, Electrical characteristics of arc-free high-power pulsed sputtering glow plasma, Surface & Coatings Technology. 202 (2008)5246-5250.
DOI: 10.1016/j.surfcoat.2008.06.021
Google Scholar
[24]
Scott Kirkpatrick, Anomalous Current and Voltage Fluctuations in high Power Impulse Magnetron Sputtering, UMI Microform 3365710(2009). 1-280.
Google Scholar
[25]
TIAN Xiu-bo, WU Zhong-zhen, SHI Jing-wei, et al, Development and discharge behavior of high power density pulse magnetron sputtering system, VACUUM. 47 (2010) 44-47.
Google Scholar
[26]
MU Zongxin, WANG Chun, JIA Li, et al, Study of discharge properties and parameters of high power pulsed unbalanced magnetron sputtering, Nuclear Fusion and Plasma Physics. 30(2010) 365-368.
Google Scholar
[27]
MichaelA. Lieberman, Allan J. Lichtenberg, Principles of Plasma Discharges and Material Processing, second ed., wiley, Berkeley, (1994).
Google Scholar
[28]
H. Klostermann , F. Fietzke, R. Labitzke, et al, Zr–Nb–N hard coatings deposited by high power pulsed sputtering using different pulse modes, Surface & Coatings Technology. 204 (2009) 1076–1080.
DOI: 10.1016/j.surfcoat.2009.09.012
Google Scholar
[29]
A. P. Ehiasarian, J. G. Wen ,I. Petrov, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, JOURNAL OF APPLIED PHYSICS. 101(2007) 054301.
DOI: 10.1063/1.2697052
Google Scholar
[30]
F.J. Jing, T.L. Yin, K. Yukimura et al, Titanium film deposition by high-power impulse magnetron sputtering: Influence of pulse duration , Vacuum. 86 (2012)2114-2119.
DOI: 10.1016/j.vacuum.2012.06.003
Google Scholar
[31]
Tai-Lei Yin, Feng-Juan Jing, Hong Sun et al, Microstructure and Platelet Adhesion Behavior of Titanium Oxide Films Synthesized by Reactive High-Power Pulse Magnetron Sputtering, IEEE TRANSACTIONS ON PLASMA SCIENCE. 41( 2013) 1837-1842.
DOI: 10.1109/tps.2013.2250528
Google Scholar
[32]
M. Audronis, V. Bellido-Gonzalez, Hysteresis behaviour of reactive high power impulse magnetron sputtering, Thin Solid Films. 518 (2010) 1962–(1965).
DOI: 10.1016/j.tsf.2009.12.011
Google Scholar
[33]
F. Horstmann, V. Sittinger, B. Szyszka, Heat treatable indium tin oxide films deposited with high power pulse magnetron sputtering, Thin Solid Films. 517 (2009) 3178-3182.
DOI: 10.1016/j.tsf.2008.11.092
Google Scholar
[34]
A.P. Ehiasarian, W. -D. Munz, L. Hultman, et al, High power pulsed magnetron sputtered CrNx films, Surface and Coatings Technology. 163-164 (2003) 267-272.
DOI: 10.1016/s0257-8972(02)00479-6
Google Scholar
[35]
M. Fenker , H. Kappl, K. Petrikowski, et al, Pulsed power magnetron sputtering of a niobium target in reactive oxygen and/or nitrogen atmosphere, Surface & Coatings Technology. 200 (2005) 1356-1360.
DOI: 10.1016/j.surfcoat.2005.08.074
Google Scholar
[36]
K. Bobzin , N. Bagcivan , P. Immich et al, Mechanical properties and oxidation behaviour of (Al, Cr)N and (Al, Cr, Si)N coatings for cutting tools deposited by HPPMS, Thin Solid Films. 517 (2008) 1251-1256.
DOI: 10.1016/j.tsf.2008.06.050
Google Scholar
[37]
A. Guillaumot, F. Lapostolle, C. Dublanche-Tixier, et al, Reactive deposition of AleN coatings in Ar/N2 atmospheres using pulsed-DC or high power impulse magnetron sputtering discharges Vacuum. (2010)1-6.
DOI: 10.1016/j.vacuum.2010.04.012
Google Scholar
[38]
J. Paulitsch , M. Schenkel , Th. Zufras , et al, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films. 518 (2010)5558-5564.
DOI: 10.1016/j.tsf.2010.05.062
Google Scholar
[39]
Jin-Hyo Boo, UHeon Kyu Park, Kyung Hoon Nam, et al, High rate deposition of poly-Si thin films at low temperature using a new designed magnetron sputtering source, Surface and Coatings Technology. 131 (2000) 211-215.
DOI: 10.1016/s0257-8972(00)00827-6
Google Scholar