The Use of Quasi-Static Indentation Testing to Evaluate Low-Velocity Impact Resistance of Ex Situ Toughened Composite

Article Preview

Abstract:

The aim of this study was to investigate the valuable impact damage parameters from quasi-static indentation testing to access the low-velocity impact behaviour of ex-situ toughened composites by comparing low-velocity impact and quasi-static test results (the same boundary conditions). In terms of the delamination damage threshold load and indentation depth, quasi-static tests predicted the impact damage resistance well. However, only very conservative estimates of maximum load due to the final fibre failure under higher energy level were achieved. This phenomenon is attributed to two factors. First, energy during quasi-static indentation event is completely transformed or absorbed by the laminate, where it is stored elastically in panel bending or absorbed by the creation of damage, without the energy in the form of vibration, heat, inelastic behaviour of the impactor or the supports. Second, strain rate effect may have a remarkable influence on the fibre failure but on undamaged and delaminated damage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. S. Yi, Q. F. Cheng, Z. Z. Liu. Sci China Technol Sci, Vol. 55 (2012), p.2255–2263.

Google Scholar

[2] W. J. Cantwell, J. Morton. Compos, Vol. 22 (1991), pp.347-362.

Google Scholar

[3] T. V. Rajamurugan, K. Shanmugam, K. Palanikumar. Mater Design, Vol. 45 (2013), pp.80-87.

Google Scholar

[4] L. S. Sutherland, C. Guedes Soares. Compos Part B - Eng, Vol. 43 (2012), pp.1459-1467.

Google Scholar

[5] D. Delfosse, A. Poursartip. Compos Part A - Appl S, Vol. 28 (1997), pp.647-655.

Google Scholar

[6] H. Kaczmarek, S. Maison. Compos Sci Technol, Vol. 51 (1994), pp.11-26.

Google Scholar

[7] M. S. Sohn, X. Z. Hu. Compos, Vol. 26 (1995), pp.849-858.

Google Scholar

[8] E. J. Herup, A. N. Palazotto. Compos Sci Technol, Vol. 57 (1998), pp.1581-1598.

Google Scholar

[9] X. S. Yi, X. F. An, M. Zhang, et al. China Patent, 200810000135. 2(2008).

Google Scholar

[10] D7136/D7136M - 05e1. Standard test method for measuring the damage resistance of a fiber–reinforced polymer matrix composite to a drop-weight impact event, (2005).

DOI: 10.1520/d7136_d7136m-05e01

Google Scholar

[11] K. Srinivasan, W. C. Jackson, B. T. Smith, et al. J Reinf Plast Comp, Vol. 11 (1992), pp.1111-1126.

Google Scholar

[12] L. Yan, D. Zhang. J Aeronaut Mater, Vol. 31 (2011), pp.71-75.

Google Scholar

[13] Y. Li, X. F. An, X. S. Yi. Int. J. Appl. Phys. Math, Vol. 2 (2012), pp.58-62.

Google Scholar

[14] G. Zhou, G. A. O. Davies. Int J Impact Eng , Vol. 16 (1995), pp.357-374.

Google Scholar

[15] G. Zhou. Compos Struct , Vol. 31 (1995), pp.185-193.

Google Scholar

[16] Y. Aoki, H. Suemasu, T. Ishikawa. Adv Compos Mater, Vol. 16 (2007), pp.45-61.

Google Scholar

[17] Z. Shen, S. C. Yang, P. H. Chen. Acta Mater Comp Sin, Vol. 25 (2008), pp.125-133.

Google Scholar

[18] Z. Shen, Z. L. Zhang, J. Wang, et al. Acta Mater Comp Sin, Vol. 21 (2005), pp.140-145.

Google Scholar