New Criterion for Prediction of Amorphous Alloy Compositions: A Сombination of Dense Packing of Spheres and the Lambda Criterion through the Coordination Number

Article Preview

Abstract:

This work presents the development of a new criterion which can indicate unknown compositions for amorphous metallic alloys. This new criterion was based on dense packing of spheres combined with the lambda criterion through the coordination number. A simplified mathematical development is presented, and software was developed with the purpose of indicating alloys with best glass forming ability (GFA). This software includes and concatenates several other criteria. For this purpose, we performed a mathematical analysis of the criteria, which included: (i) λ_min criterion which uses the minimum topological instability parameter and is used as an indication of phase competition during the solidification. (ii) the γ parameter, which reflects the relative GFA between bulk metallic glasses (BMG), and it is based on characteristic temperatures, such as: the glass transition temperature - Tg, the crystallization onset temperature - Tx and the liquidus temperature - Tl. (iii) the parameter Zc that is the critical thickness for bulk glass formation, which corresponds to the maximum dimension in which the molten can be formed without any crystals precipitation and (iv) the parameter Rc that is the critical cooling rate for glass formation, which decreases inversely to the Zc values. Through a mathematical formalism combining all the parameters, the software can decide the most suitable composition range to produce a new alloy. The results are presented and compared with the ones available in the literature. The results indicate good agreement with the literature since it is not a general theory, but intends to meet some specific cases with a reasonable convergence and which still need to be better studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

411-418

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Buckel, Elektronenbeugungs-Aufnahmen von dünnen Metallschichten bei tiefen Temperaturen, Zeitschrift für Phys. A Hadron. Nucl. 138 (1964) 136–150.

DOI: 10.1007/bf01337905

Google Scholar

[2] H.A. Bruck, T. Christman, A.J. Rosakis, W.L. Johnson, Quasi-static constitutive behavior of Zr41. 25Ti13. 75Ni10Cu12. 5Be22. 5 bulk amorphous alloys, Scr. Metall. Mater. 30 (1994) 429-434.

DOI: 10.1016/0956-716x(94)90598-3

Google Scholar

[3] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (2011) 2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[4] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[5] D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969) 473-488.

Google Scholar

[6] Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50 (2002) 3501-3512.

DOI: 10.1016/s1359-6454(02)00166-0

Google Scholar

[7] T. Egami, Y. Waseda, Atomic size effect on the formability of metallic glasses, J. Non-Cryst. Solids. 64 (1984) 113-134.

DOI: 10.1016/0022-3093(84)90210-2

Google Scholar

[8] M. F. de Oliveira, A simple criterion to predict the glass forming ability of metallic alloys, J. Appl. Phys. 111 (2012) 023509.

DOI: 10.1063/1.3676196

Google Scholar

[9] R. D. Sá Lisboa, C. Bolfarini, W. J. Botta F., C. S. Kiminami, Topological instability as a criterion for design and selection of aluminum-based glass-former alloys, Appl. Phys. Lett. 86 (2005) 211904.

DOI: 10.1063/1.1931047

Google Scholar

[10] M. F. de Oliveira, A new correlation between electronic parameters and glass forming ability of metallic alloys, Philos. Mag. Lett. 91 (2011) 418–422.

DOI: 10.1080/09500839.2011.579078

Google Scholar

[11] D. Turnbull, M. H. Cohen, Free-volume model of the amorphous phase: glass transition, J. Chem. Phys. 34 (1961) 120.

Google Scholar

[12] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279–306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[13] D.B. Miracle, A structural model for metallic glasses, Nat. Mater. 3 (2004) 697–702.

Google Scholar

[14] D.B. Miracle, O.N. Senkov, W.S. Sanders, K.L. Kendig, Structure-forming principles for amorphous metals, Mater. Sci. Eng. A. 375–377 (2004) 150–156.

DOI: 10.1016/j.msea.2003.10.130

Google Scholar

[15] T. Egami, Y. Waseda, Atomic size effect on the formability of metallic glasses, J. Non. Cryst. Solids. 64 (1984) 113–134.

DOI: 10.1016/0022-3093(84)90210-2

Google Scholar

[16] Z. Yan, Evaluation of the optimum solute concentration for good glass forming ability in multicomponent metallic glasses, Mater. Res. Bull. 38 (2003) 681–689.

DOI: 10.1016/s0025-5408(03)00010-2

Google Scholar

[17] Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50 (2002) 3501-3512.

DOI: 10.1016/s1359-6454(02)00166-0

Google Scholar

[18] W.Y. Liu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, New criteria of glass forming ability, thermal stability and characteristic temperatures for various bulk metallic glass systems, Mater. Sci. Eng. A. 459 (2007) 196-203.

DOI: 10.1016/j.msea.2007.01.033

Google Scholar

[19] T. Egami, Universal criterion for metallic glass formation, Mater. Sci. Eng. A. 226–228 (1997) 261–267.

DOI: 10.1016/s0921-5093(97)80041-x

Google Scholar

[20] K. Tomolya, D. Janovszky, M. Sveda, N. Hegman, J. Solyom, A. Roosz, CuZrAl amorphous alloys prepared by casting and milling, J. of Phys.: Conference Series. 144 (2009) 012032.

DOI: 10.1088/1742-6596/144/1/012032

Google Scholar

[21] C. Suryanarayana, I. Seki, A. Inoue, A critical analysis of the glass-forming ability of alloys, J. Non. Cryst. Solids. 355 (2009) 355–360.

DOI: 10.1016/j.jnoncrysol.2008.12.009

Google Scholar

[22] A. Inoue, H. Kimura, S. Sakai, T. Masumoto, Mechanical properties of titanium-based alloys with metalloids, 4th International Conference on Titanium, Metallurgical Society of AIME, Kyoto, (1980) 1137-1145.

Google Scholar