An Overview of Hydrogen Production from Renewable Energy Source for Remote Area Application

Article Preview

Abstract:

Hydrogen production through solar energy technology plays a very important role in the development of sustainable energy systems. Traditionally, a wide variety of methods are available for hydrogen production from conventional sources such as natural gas, coal and oil. Their application, however, contributes to emission of ozone depleting gases such as CO2. This paper reviews the recent developments of hydrogen production methods related to solar-hydrogen production for remote area application. The methods discussed are thermochemical, photoelectrochemical and electrochemical where water is the basic raw material. From this review, the low overall efficiency of photoelectrochemical and thermochemical processes make them non-attractive for remote areas application. This paper concludes that the most suitable method for hydrogen production for remote area application is electrochemical process where electrolyzer represents the most important process to obtain hydrogen without any emission of air pollutants or greenhouse gases. This paper will be useful for manufacturers, academicians and researchers who are involved and interested in solar hydrogen system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-479

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. L. Zervas, H. Sarimveis, J. A. Palyvos, and N. C. G. Markatos, Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells, Journal of Power Sources. 181(2008) 327-338.

DOI: 10.1016/j.jpowsour.2007.11.067

Google Scholar

[2] O. C. Onar, M. Uzunoglu, and M. S. Alam, Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system, Journal of Power Sources. 185 (2008) 1273-1283.

DOI: 10.1016/j.jpowsour.2008.08.083

Google Scholar

[3] J. E. Funk, Thermochemical hydrogen production past and present, International Journal of Hydrogen Energy. 26 (2001) 185 -190.

DOI: 10.1016/s0360-3199(00)00062-8

Google Scholar

[4] J. M. Norbeck, J. W. Heffel, T. D. Durbin, B. Tabbara, J. M. Bowden, and M. C. Montani, Hydrogen Fuel for Surface Transportation, Society of Automotive Engineers Inc, ed., Warrendale PA, (1996).

Google Scholar

[5] S. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, International Journal of Hydrogen Energy. 29 (2004) 1451-1458.

DOI: 10.1016/j.ijhydene.2004.02.014

Google Scholar

[6] Z. Wang, R. R. Roberts, G. F. Naterer, and K. S. Gabriel, Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies, International Journal of Hydrogen Energy. 37 (2012) 16287-16301.

DOI: 10.1016/j.ijhydene.2012.03.057

Google Scholar

[7] C. Perkins, Likely near-term solar-thermal water splitting technologies, International Journal of Hydrogen Energy. 29 (2004) 1587-1599.

DOI: 10.1016/j.ijhydene.2004.02.019

Google Scholar

[8] M. Rekas, C. C. Sorrell, T. Bak, and J. Nowotny, Photo-electrochemical hydrogen generation from water using solar energy. Materials related aspects., International Journal of Hydrogen Energy. 27 (2002) 991–1022.

DOI: 10.1016/s0360-3199(02)00022-8

Google Scholar

[9] J. Turner, G. Sverdrup, M. K. Mann, P. -C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, Renewable Hydrogen Production, International Journal of Hydrogen Energy. 32 (2008) 379–407.

DOI: 10.1002/er.1372

Google Scholar

[10] K. O. Iwu, A. Galeckas, A. Y. Kuznetsov, and T. Norby, Solid-state photoelectrochemical H2 generation with gaseous reactants, Electrochimica Acta. 97 (2013) 320-325.

DOI: 10.1016/j.electacta.2013.03.013

Google Scholar

[11] B. Paul, Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply, International Journal of Hydrogen Energy. 33 (2008) 490-498.

DOI: 10.1016/j.ijhydene.2007.10.040

Google Scholar

[12] J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catalysis Today. 139 (2009) 244-260.

DOI: 10.1016/j.cattod.2008.08.039

Google Scholar

[13] W. G. J. van Helden, R. J. C. van Zolingen, and H. A. Zondag, PV thermal systems: PV panels supplying renewable electricity and heat, Progress in Photovoltaics: Research and Applications. 12 (2004) 415-426.

DOI: 10.1002/pip.559

Google Scholar

[14] K. Agbossou., M. L. Doumbia., and A. Anouar., Optimal Hydrogen Production In a stand alone Renewable Energy system. pdf, IEEE. (2005) 2932-2936.

DOI: 10.1109/ias.2005.1518876

Google Scholar

[15] S. Kar, R. C. Bindal, S. Prabhakar, and P. K. Tewari, The application of membrane reactor technology in hydrogen production using S–I thermochemical process: A roadmap, International Journal of Hydrogen Energy. 37 (2012) 3612-3620.

DOI: 10.1016/j.ijhydene.2011.03.170

Google Scholar

[16] C.L. Tseng, C.J. Tseng, K.Y. Cheng, L.W. Hourng, J.C. Chen, L.C. Weng, and S.K. Wu, Numerical analysis of the solar reactor design for a photoelectrochemical hydrogen production system, International Journal of Hydrogen Energy. 37 (2012).

DOI: 10.1016/j.ijhydene.2012.05.009

Google Scholar

[17] S. Siracusano, V. Baglio, N. Briguglio, G. Brunaccini, A. Di Blasi, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, and A. S. Aricò, An electrochemical study of a PEM stack for water electrolysis, International Journal of Hydrogen Energy. 37 (2012).

DOI: 10.1016/j.ijhydene.2011.06.019

Google Scholar