Investigation of Photocatalytic Activity of TiO2-PANi Nanocomposites

Article Preview

Abstract:

In this paper the photocatalytic activity of TiO2-PANi nanocomposites prepared using two different In-situ polymerization methods have been investigated. The same pressure, temperature, precursors, mole ratio, and solvent have been employed for preparation of nanocomposites. The synthesized nanocomposites were characterized by FESEM, XRD and FTIR. Results revealed the successful preparation of TiO2- PANI nanocomposites. TiO2-PANi nanocomposite synthesized using method 2 showed very well dispersed TiO2 nanoparticles on the surface of PANi. There is no agglomeration of TiO2 nanoparticles in PANi matrix. The photocatalytic activities of nanocomposites were evaluated by using photo degradation of Methylene Blue (MB) in aqueous solution under UV irradiation. These nanocomposites exhibit much higher photocatalytic activity compared with TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Lv, L. Yu, H. Huang, H. Liu, Y. Feng, Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalytic properties under the solar light irradiation, J. Alloys Comp. 488 (2009) 314-319.

DOI: 10.1016/j.jallcom.2009.08.116

Google Scholar

[2] M.R. Hoffman, S. T Martin, W. Choi, W. Choi, D.W. Bahnemann, environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69.

DOI: 10.1021/cr00033a004

Google Scholar

[3] I.N. Martynov, S. Uma, S. Rodrigues, K.J. Klabunde, Structural defects cause TiO2-based photocatalysts to be active in visible light, Chem. Commun. 7 (2004) 2476.

DOI: 10.1039/b409730k

Google Scholar

[4] F. Lux Polymer 35 (1994) 2915.

Google Scholar

[5] K. Takahashi, K. Nakamura, T. Yamaguchi, T. Komura, S. Ito, R. Aizawa, K. Murata, Characterization of water-soluble externally HCI-doped conducting polynaline, Synthethic Metals. 128 (2002) 27.

DOI: 10.1016/s0379-6779(01)00660-9

Google Scholar

[6] W. Zhou, Q. Cao, S. Tang, Powder Technology. 168 (2006) 32.

Google Scholar

[7] B. Li, X. Wang, M. Yan, L. Li, Preparation and characterization of nano-tio2 powder, "materials chemistry and physics, Materials Chemistry and Physics. 78 (2002) 184.

DOI: 10.1016/s0254-0584(02)00226-2

Google Scholar

[8] Yu.V. Kolenko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-justin, Applied Catalysis B: Environmental. 54 (2004) 51.

DOI: 10.1016/j.apcatb.2004.06.006

Google Scholar

[9] S.G. Pawar, S. L. Patil, M.A. Chougule, D.M. Jundale and V.B. Patil, Archievesof Physics Research. 1(1) (2010) 57.

Google Scholar

[10] S.G. Pawar, S. L. Patil, A.T. Mane, B.T. Raut, V.B. Patil, Archieves of Applied Science Research. 1 (2) (2009) 109.

Google Scholar

[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoko, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293. (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[12] R. Rattanakam, S. Supothina, Visible-light-sensitive N-doped TiO2 photocatalysts prepared by a mechanochemicalmethod: effect of a nitrogen source, Res. Chem. Intermed. 35 (2009) 263-269.

DOI: 10.1007/s11164-009-0030-z

Google Scholar