Dynamic Properties of Cortical Bone Tissue: Impact Tests and Numerical Study

Article Preview

Abstract:

Bone is the principal structural component of a skeleton: it assists the load-bearing framework of a living body. Structural integrity of this component is important; understanding of its mechanical behaviour up to failure is necessary for prevention and diagnostic of trauma. Bone fractures occur in both low-energy trauma, such as falls and sports injury, and high-energy trauma, such as car crash and cycling accidents. By developing adequate numerical models to predict and describe the deformation and fracture behaviour up to fracture of a cortical bone tissue, a detailed study of reasons for, and ways to prevent or treatment methods of, bone fracture could be implemented. This study deals with both experimental analysis and numerical simulations of this tissue and its response to impact dynamic loading. Two areas are covered: Izod tests for quantifying a bone’s behaviour under impact loading, and a 3D finite-element model simulating these tests. In the first part, properties of cortical bone tissue were investigated under impact loading condition. In the second part, a 3D numerical model for the Izod test was developed using the Abaqus/Explicit finite-element software. Bone has time-dependent properties – viscoelastic – that were assigned to the specimen to simulate the short term event, impact. The developed numerical model was capable of capturing the behaviour of the hammer-specimen interaction correctly. A good agreement between the experimental and numerical data was found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

387-392

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cullinane, D.M., Einhorn, T.A., Biomechanics of bone, in Principles of Bone Biology, Bilezikian, J.P., Raisz, L.G., Rodan, A.R., Editor. 2002, Academic Press San Diego, USA.

DOI: 10.1016/b978-012098652-1/50100-1

Google Scholar

[2] Fotios, K., Demetrios, D.R., Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique. J. Biomech., 1990. 23(11): pp.1173-1184.

DOI: 10.1016/0021-9290(90)90010-z

Google Scholar

[3] Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D., The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. /Transactions of the ASME 130, 011011-1-8, (2008).

DOI: 10.1115/1.2838032

Google Scholar

[4] Currey, J.D., Changes in the impact energy absorption of bone with age. J. Biomech., 1979. 12: pp.459-469.

Google Scholar

[5] Currey, J.D., Brear, K., Zioupos, P., The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech., 1996. 29(2): pp.257-260.

DOI: 10.1016/0021-9290(95)00048-8

Google Scholar

[6] Panagiotopoulos, E., kostopoulos, V., Tsantzalis, S., Fortis, A.P., Doulalas, A., Impact energy absorbtion by specimens from the upper end of the human femur. Injury, 2005. 36: pp.613-617.

DOI: 10.1016/j.injury.2004.10.014

Google Scholar

[7] Black, J., Hasting, G., Handbook of Biomaterial Properties 1998, London, UK: Chapman Hall.

Google Scholar

[8] Volkan, K., An assessment of impact strength of the mandible. J. Biomech., 2008. 41: pp.3488-3491.

Google Scholar

[9] Saha, S., Hayes, W.C., Tensile impact properties of human compact bone. J. Biomech., 1976. 9(4): pp.243-244.

Google Scholar

[10] Lee, S., Novitskaya, E.E., Reynante, B., Vasquez, J., Urbaniak, R., Takahashi, T., Woolley, E., Tombolato, L., Chen, Po-Yu, McKittrick, J., Impact testing of structural biological materials. Mater. Sci. Eng. C, 2010. In Press.

DOI: 10.1016/j.msec.2010.10.017

Google Scholar

[11] Kemper, A.R., McNally, C., Duma, S.M., Dynamic tensile material properties of human pelvic cortical bone. Biomed. Sci. Instrum., 2008. 44: pp.417-418.

Google Scholar

[12] Oshita, F., Omori, K., Nakahira, Y., Miki, K., Development of a finite element model of the human body. In 7th International LS-DYNA Users Conference May 19-21 2002. Dearborn, Michigan.

Google Scholar

[13] Chawla, A., Mukherjee, S., Mohan, D., Parihar, A., Validation of Lower Extremity Model in THUMS 155. in 2004 International IRCOBI Conference on the Biomechanics of Impact September 22-24, 2004. Indian Institute of Technology, India.

Google Scholar

[14] Crolet, J.M., Aoubiza, B., Meunier, A., Compact bone: Numerical simulation of mechanical characteristics. J. Biomech., 1993. 26(6): pp.677-687.

DOI: 10.1016/0021-9290(93)90031-9

Google Scholar

[15] Aoubiza, B., Crolet, J.M., Meunier, A., On the mechanical characterization of compact bone structure using the homogenization theory. J. Biomech., 1996. 29(12): pp.1539-1547.

DOI: 10.1016/s0021-9290(96)80005-4

Google Scholar

[16] Morias, J. j.L., de Moura, M.F.S.F., Pereira, F.A.M., Xavier, J., Dourado, N., Dias, M.I.R., Azevedo, J.M. T, The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue. J. Mech. Behav. Biomed. Mater., doi: 10. 1016/j. jmbbm. 2010. 04. 001, (2010).

DOI: 10.1016/j.jmbbm.2010.04.001

Google Scholar

[17] Abdel-Wahab, A.A., Alam, K., Silberschmidt, V.V., Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J. Mech. Behav. Biomed. Mater., doi: 10. 1016/j. jmbbm. 2010. 10. 001, 2011 (In Press).

DOI: 10.1016/j.jmbbm.2010.10.001

Google Scholar

[18] Abdel-Wahab, A.A., Maligno, A.R., Silberschmidt, V.V. , Dynamic properties of cortical bone tissue: Izod tests and numerical study. Compu. Mater. Con., 2010. 19(3): pp.217-238.

Google Scholar

[19] Rho, J.Y., Kuhn-Spearing, L., Zioupos, P., Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998. 20(2): pp.92-102.

DOI: 10.1016/s1350-4533(98)00007-1

Google Scholar

[20] Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M., Compression of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech., 2004. 37: pp.27-35.

DOI: 10.1016/s0021-9290(03)00257-4

Google Scholar

[21] Pattin, C.A., Calet, W.E., Carter, D.R., Cyclic mechanical property degradation during fatigue loading of cortical bone J. Biomech., 1996. 29: pp.69-79.

DOI: 10.1016/0021-9290(94)00156-1

Google Scholar