A Comparative Study on the Removal of 2,2',4,4'-Tetrabrominated Diphenyl Ether (BDE-47) by Four Different Methods

Article Preview

Abstract:

The zero-valent iron (ZVI) particles were synthesized by the aqueous phase reduction, and the tapping mode image of atomic force microscope (AFM) showed that the diameter of the ZVI particles was in the range of 90 nm - 400 nm. By comparison of the debromination of BDE-47 by sunlight, ZVI, ZVI impregnated activated carbon (ZVI/AC) and ZVI impregnated ion exchange resin (ZVI/IER), the debromination effect was found to descend in the following order: ZVI/IER > ZVI/AC > ZVI > sunlight. Second order and first order kinetic models were used for the fitting of the debromination data of BDE-47. Results show that the debromination data of BDE-47 by the sunlight, ZVI, ZVI/AC and ZVI/IER in the current study are generally best described by the pseudo first order equation. Meanwhile, the debromination data of BDE-47 by the ZVI and ZVI/IER can also be described by the pseudo second order equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-215

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhuang, S. Ahn and R.G. Luthy: Environ. Sci. Technol. Vol. 44 (2010), p.8236.

Google Scholar

[2] P.O. Darnerud, G.S. Eriksen, T. Jóhannesson, P.B. Larsen and M. Viluksela: Environ. Health. Perspect. Vol. 109 (2001), p.49.

DOI: 10.1289/ehp.01109s149

Google Scholar

[3] A. Leung, Z.W. Cai and M.H. Wong: J. Matcr. Cyclcs. Wastc. Manag. Vol. 8 (2006), p.21.

Google Scholar

[4] L. Pan and W. Bian: Chem. Phys. Chem. Vol. 14 (2013), p.1264.

Google Scholar

[5] J.W. Hu, Y. Zhuang, J. Luo and X.H. Wei: Advan. Mater. Res. Vol. 550-553 (2012) p.2668.

Google Scholar

[6] L.Y. Li, Y.M. Lin and J.W. Hu: Advan. Mater. Res. Vol. 1010-1012 (2014) p.3.

Google Scholar

[7] C.A. de Wit: Chemosphere Vol. 46 (2002), p.583.

Google Scholar

[8] F. Rahman, K.H. Langford, M.D. Scrimshaw, et al. Polybrominated diphenyl ether (PBDE) flame retardants. Sci. Total Environ. Vol. 275 (2001), p.1.

DOI: 10.1016/s0048-9697(01)00852-x

Google Scholar

[9] T. Gouin and T. Harner: Environ. Int. Vol. 29 (2003), p.717.

Google Scholar

[10] U. Schenker, F. Soltermann, M. Scheringer and K. Hungerbuhler: Environ. Sci. Technol. Vol. 42 (2008), p.9244.

Google Scholar

[11] A. li, C. Tai, Z.S. Zhao, Y.W. Wang, Q.H. Zhang, G.B. Jiang and J.T. Hu: Environ. Sci. Technol. Vol. 41 (2007), p.6841.

Google Scholar

[12] Y.R. Zhang, J. Wu, H.J. Zhu and K. Zhang: Journal of Henan University of Urban Construction, Vol. 21 (2012), p.35 (in Chinese).

Google Scholar

[13] S.N. Zhu, Y. Xu and Z.F. Ye: Chinese Journal of Environmental Engineering, Vol. 6 (2012), p.3503 (in Chinese).

Google Scholar

[14] L. Wu, J.P. He, T. Q. Zhao, Q.Q. Wang and L.L. Xu: Acta Sci. Circumst. Vol. 33 (2013), p.1585 (in Chinese).

Google Scholar

[15] G.W. Zu, S. Wen, G.Y. Sheng and J.M. Fu: Ecol. Environ. Sci. Vol. 18 (2009), p.205 (in Chinese).

Google Scholar

[16] Y. Zhuang, S. Ahn, A.L. Seyfferth, Y. Masue-Slowey, S. Fendorf and R.G. Luthy: Environ. Sci. Technol. Vol. 45 (2011), p.4896.

DOI: 10.1021/es104312h

Google Scholar

[17] D.G. Han, Z.D. Gao, P.L. Gao: Physical chemistry (Higher Education Press, China 2001).

Google Scholar