Study on Separation/Enrichment of Trace Zinc Using Ternary Association Complex System

Article Preview

Abstract:

The paper presents a novel method for the separation/enrichment of trace Zn2+ using NH4SCN –dodecyl dimethyl benzyl ammonium bromide (DDBAB)-water system.The effects of different parameters on the enrichment yield of Zn2+ have been investigated. The possible enrichment mechanism of Zn2+ was discussed.The results show that under the optimum conditions, Zn (SCN)42- produced by Zn2+ and SCN- reacts with DDBAB cation (DDBAB +) to form the water-insoluble ternary association complex of [Zn (SCN)4](DDBAB)2, so Zn2+ was enriched quantitatively.While Al3+,Mn2+,Ni2+ and Pb2+ could not be enriched. Thereby, the quantitative separation of Zn2+ from the above metal ions could be achieved.A new method for the separation/enrichment of trace zinc was established. The proposed method has been successfully applied to the separation/enrichment of trace Zn2+ in the samles of synthetic water, and the enrichment yield is 96.4%-99.5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-248

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yamini,Y.; Hosseini,M. -H.; Morsali,A. Microchim. Acta. 2004, 146, 67.

Google Scholar

[2] Mostafavi,A.; Afzali,D.; Taher,M. -A. Anal. sci. 2006, 22, 840.

Google Scholar

[3] Kenduzler,E.;A. Turker,R. Anal. sci. 2002, 18, 917.

Google Scholar

[4] Mizuike,A.; Kono,T. Mikrochim. Acta. 1970, 665.

Google Scholar

[5] Reddy,M. -L. -P.; Preetha,G. -P.; Meena,C. -V.; Prasadarao,T.; Iyer,C. -S. -P.; Damodaran,A. -D. J. Radioanal. Nucl. Chem. 1996, 211, 305.

Google Scholar

[6] Billah,M.; Honjo,T. Fresenius.J. Anal. Chem. 1997, 357: 61.

Google Scholar

[7] Oliveros,M. -C. -C.; Blas,O. -J.; Pavon,J. -L. -P.; Cordero,B. -M. J. Anal. At. Spectrom. 1998, 13, 547.

Google Scholar

[8] Pancras,J. -P.; Puri,B. -K. Anal Bioanal Chem. 2002, 374 : 1306.

Google Scholar

[9] Mota,M. -M. -G.; Jonker,M. -A.; Griepink,B. Fresenius Z. Anal Chem. 1979, 296, 345.

Google Scholar

[10] Ding,X.; Suzuki,T.; Nomura,M.; Kim, H-J.; Sgiyama,Y.; Fujii,Y. J. Radioanal. Nucl. Chem. 2007, 273, 79.

Google Scholar

[11] Ding,X. -C.; Nomura,M.; Suzuki,T.; Fujii,Y. Chromatographia. 2010, 71, 195.

Google Scholar

[12] Sayama,Y.; Hayashibe,Y.; Fukuda,M. Fresenius.J. Anal. Chem. 1995, 353, 162.

Google Scholar

[13] Marta, F. -T. -R.; Ana,C. -B. -D.; João,L. -M. -S.; José,L. -F. -C. -L.; Elias,A. -G. -Z. Anal. Bioanal. Chem. 2006, 384, 1019.

Google Scholar

[14] Shimizu,T.; Hagiwara,M.; Takino,K. Fresenius Z. Anal. Chem. 1981, 306, 29.

Google Scholar

[15] Chang, W. -B.; Li,K. -A. Brief Handbook of Analytical Chemistry; Beijing University Press: Beijing, 1981; 262.

Google Scholar

[16] Pan,J. -M.; Chen,Y. -S.; Yan,H. -T. Chromogenic Agent and Its Application in Metallurgical Analysis; Shanghai Scientific and Technical Publisher : Shanghai, 1981; p.116.

Google Scholar